Презентация на тему Правильные выпуклые многогранники


Министерство образования и науки Украины Керченская ОШ I-III ступеней № 24 Преподаватель математики Нефедова В. М. Правильные выпуклые многогранники Проблема исследованияОпределение правильного многогранникаВиды правильных многогранниковЭлементы симметрии и формулыНемного историиИспользованные материалы Правильных многогранников вызывающе мало, но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук. Л.Кэрролл Проблема исследования Изучение многогранников на протяжении всей истории велось не только с позиций дальнейшего их применения, но и с целью осмысления философских вопросов об устройстве Вселенной и природе Пространства Определение: Выпуклый многогранник называется правильным, если все его грани равные правильные многоугольники и, кроме того, в каждой вершине сходится одинаковое число ребер. Существует всего 5 видов правильных многогранников Виды правильных многогранников тетраэдр гексаэдр октаэдр додекаэдр икосаэдр К содержанию Составлен из восьми равносторонних треугольников. Каждая вершина октаэдра является вершиной четырёх треугольников. Следовательно, сумма плоских углов при каждой вершине 240є. Правильный октаэдр Рис. 1 Составлен из шести квадратов. Каждая вершина куба является вершиной трёх квадратов. Следовательно, сумма плоских углов при каждой вершине равна 270є. Куб (гексаэдр) Рис. 3 Правильный тетраэдр Составлен из четырёх равносторонних треугольников. Каждая его вершина является вершиной трёх треугольников. Следовательно, сумма плоских углов при каждой вершине равна 180є. Рис. 2 Правильный додекаэдр Составлен из двенадцати правильных пятиугольников. Каждая вершина додекаэдра является вершиной трёх правильных пятиугольников. Следовательно, сумма плоских углов при каждой вершине равна 324є. Рис. 4 Правильный икосаэдр Составлен из двадцати равносторонних треугольников. Каждая вершина икосаэдра является вершиной пяти треугольников. Следовательно, сумма плоских углов при каждой вершине равна 300є. Рис. 5 Элементы симметрии и формулы: ОктаэдрТетраэдрГексаэдр (куб)ДодекаэдрИкосаэдр ОктаэдрОктаэдр имеет центр симметрии - центр октаэдра, 9 осей симметрии и 9 плоскостей симметрии. Радиус описанной сферы: Радиус вписанной сферы: Площадь поверхности: Объем октаэдра:                                                                                          к содержанию ТетраэдрТетраэдр не имеет центра симметрии, но имеет 3 оси симметрии и 6 плоскостей симметрии Радиус описанной сферы: Радиус вписанной сферы: Площадь поверхности: Объем тетраэдра: к содержанию Гексаэдр (куб)Куб имеет центр симметрии - центр куба, 9 осей симметрии и 9 плоскостей симметрии. Радиус описанной сферы: Радиус вписанной сферы: Площадь поверхности куба: Объем куба: К содержанию Додекаэдр Додекаэдр имеет центр симметрии - центр додекаэдра, 15 осей симметрии и 15 плоскостей симметрии. Радиус описанной сферы: Радиус вписанной сферы: Площадь поверхности: Объем додекаэдра: К содержанию ИкосаэдрИкосаэдр имеет центр симметрии - центр икосаэдра, 15 осей симметрии и 15 плоскостей симметрии. Радиус описанной сферы: Радиус вписанной сферы: Площадь поверхности: Объем икосаэдра: К содержанию Правильный многогранник Число граней вершин рёбер Тетраэдр 4 4 6 Куб 6 8 12 Октаэдр 8 6 12 Додекаэдр 12 20 30 Икосаэдр 20 12 30 Таблица № 1 Правильный многогранник Число граней и вершин(Г + В) рёбер(Р) Тетраэдр 4 + 4 = 8 6 Куб 6 + 8 = 14 12 Октаэдр 8 + 6 = 14 12 Додекаэдр 12 + 20 = 32 30 Икосаэдр 20 + 12 = 32 30 Таблица № 2 Свойства этих многогранников изу-чали ученые и священники; их мо- дели можно увидеть в работах ар-хитекторов и ювелиров, им припи-сывались различные магические ицелебные свойства. Немного истории К содержанию Великий древнегреческий ученый Платон, живший в IV-V вв. до н. э., считал, что эти тела олицетворяют сущность природы. Человечеству были известны четыре сущности: огонь, вода, земля и воздух. По мнению Платона, их атомы имели вид правильных многогранников: огня — тетраэдр, земли  — гексаэдр, воздуха  - октаэдр, воды  — икосаэдр. к содержанию Но оставался еще додекаэдр - отсутствует полное соответствие. Платон предположил, что существует еще одна сущность - мировой эфир, атомы которого имеют вид додекаэдра. Платон и его ученики в своих работах уделяли большое внимание правильным многогранникам, и поэтому их ещё называют "платоновыми телами". К содержанию Использовались материалы: http://www.vschool.ruhttp://center.fio.ruhttp://gemsnet.ruhttp://alzl.narod.ruПрограммы:Microsoft WordMicrosoft Power PointInternet Explorer