Презентация по геометрии по теме Усеченный конус!


Усеченный конус. Усеченным конусом называется часть полного конуса, заключенная между основанием и секущей плоскостью, параллельной основанию. Круги, лежащие в параллельных плоскостях, называются основаниями усеченного конуса. Образующей усеченного конуса называется часть образующей полного конуса, заключенная между основаниями. Высотой усеченного конуса называется расстояние между основаниями. Пусть в конусе, высота которого известна, проведено сечение, находящееся на расстоянии три от вершины. Чему равна образующая получившегося усеченного конуса, если известна образующая полного конуса? 8 ? Усеченный конус можно рассматривать как тело, полученное при вращении прямоугольной трапеции вокруг боковой стороны, перпендикулярной основанию. Пусть дан усеченный конус, радиусы оснований и высота которого известны. Найдите образующую усеченного конуса. 8 ? Прямая, соединяющая центры оснований, называется осью усеченного конуса. Сечение, проходящее через ось, называется осевым. Осевое сечение является равнобедренной трапецией. Найдите площадь осевого сечения, если известны радиус нижнего основания, высота и образующая. 36 ? Боковая поверхность усеченного конуса. Площадь боковой поверхности усеченного конуса. Площадь боковой поверхности усеченного конуса равна произведению полусуммы длин окружностей оснований на образующую. Доказательство: Боковую поверхность усеченного конуса будем понимать как предел, к которому стремится боковая поверхность вписанной в этот конус правильной усеченной пирамиды, когда число боковых граней неограниченно увеличивается. Доказательство: Впишем в конус правильную пирамиду. Ее боковая поверхность состоит из трапеций. Площадь боковой поверхности усеченного конуса можно рассматривать как разность между площадями боковых поверхностей двух конусов. Поэтому развертка усеченного конуса – это часть круглого кольца. Замечание: Усеченный конус получен от вращения прямоугольной трапеции вокруг боковой стороны, перпендикулярной основаниям, Найдите площадь боковой поверхности усеченного конуса, если известны основания и боковая сторона трапеции. ? Задача. Радиус меньшего основания усеченного конуса равен 5, высота равна 6, а расстояние от центра меньшего основания до окружности большего основания равно 10. Найдите площадь боковых поверхностей усеченного и полного конусов. Достроим усеченный конус до полного и проведем осевое сечение. Решение: 1) Вычислим радиус большего основания. Решение: 2) Найдем боковую сторону трапеции –образующую усеченного конуса. Решение: 3) Используя подобие треугольников, найдем образующую полного конуса. Решение: ~ 4) Подставим найденные значения в формулы для площадей боковой поверхности полного и усеченного конусов. Решение: Формула объема усеченного конуса. Объем усеченного конуса равен сумме объемов трех конусов, имеющих одинаковую высоту с усеченным конусом, а основаниями: один – нижнее основание этого конуса, другой – верхнее, а третий – круг, радиус которого есть среднее геометрическое между радиусами верхнего и нижнего оснований. Поместим на верхнем основании усеченного конуса малый конус, дополняющий его до полного и рассмотрим объем его как разность объемов двух конусов. Доказательство: Вычислим высоту полного конуса из подобия треугольников. Доказательство: ~ Объемы полного и дополнительного конусов относятся как кубы радиусов оснований. Доказательство: ~ Вычтем из объема большого конуса объем малого конуса. Доказательство: Найдите объем усеченного конуса, если известны его высота и радиусы оснований. 149π ? Подобные цилиндры и конусы. Подобные цилиндры или конусы можно рассматривать как тела, полученные от вращения подобных прямоугольников или прямоугольных треугольников. Сечение, параллельное основанию конуса, отсекает от него малый конус, подобный большому. В цилиндре проведено сечение, параллельное основанию. Будет ли малый цилиндр, который отсекается этим сечением, подобен большому? ? Площади боковых поверхностей подобных цилиндров и конусов относятся как квадраты радиусов или высот, а объемы – как кубы радиусов или высот. В конусе, высота которого известна, проведено сечение, параллельное основанию. Известно также соотношение объемов малого и большого конусов. На каком расстоянии от основания находится сечение? ? 2 Радиусы оснований усеченного конуса относятся как 2:3. Высота конуса разделена на три равные части, и через точки деления проведены плоскости, параллельные основаниям. Найти, в каком отношении разделился объем усеченного конуса. Задача. Зная, что радиусы оснований конуса относятся как два к трем, обозначим радиусы как 2а и 3а и рассмотрим осевое сечение конуса. Решение: 1) Используя подобие, найдем радиусы проведенных сечений. Решение: 2) Достроив усеченный конус до полного, найдем, какую часть от полного конуса составляют меньшие конусы. Решение: V – объем наибольшего конуса 3) Определим, какую часть от объема полного конуса составляют усеченные конусы, расположенные между соседними сечениями и найдем отношение объемов этих конусов. Решение: Ответ:V1 :V2 :V3 = 127 : 168 : 217