Лекция Операции над комплексными числами
Лекция 1. КОМПЛЕКСНЫЕ ЧИСЛА
Квадратное уравнение x2 = – 1 на множестве действительных чисел решений не имеет, так как среди действительных чисел нет такого числа, квадрат которого отрицателен. Действительных чисел явно недостаточно, чтобы построить такую теорию квадратных уравнений, в рамках которой каждое квадратное уравнение было бы разрешимо. Это соображение приводит к необходимости вводить новые числа и расширять множество действительных чисел до множества комплексных чисел, в котором было бы разрешимо любое квадратное уравнение.
Итак, расширяя множество действительных чисел до множества новых чисел, названных комплексными, необходимо, чтобы:
а) комплексные числа подчинялись основным свойствам действительных чисел, в частности, коммутативному, ассоциативному и дистрибутивному законам;б) в новом числовом множестве были разрешимы любые квадратные уравнения.
Множество действительных чисел недостаточно обширно, чтобы в нем были бы разрешимы все квадратные уравнения. Поэтому, расширяя множество действительных чисел до множества комплексных чисел, мы потребуем, чтобы в нем можно было бы построить полную и законченную теорию квадратных уравнений. Другими словами, мы расширим множество действительных чисел до такого множества, в котором можно будет решить любое квадратное уравнение. Так, уравнение x2 = – 1 не имеет решений во множестве действительных чисел потому, что квадрат действительного числа не может быть отрицательным. В новом числовом множестве оно должно иметь решение. Для этого вводится такой специальный символ i, называемый мнимой единицей, квадрат которого равен – 1.
Основные определения. Операции над комплексными числами
1. Существует элемент i (мнимая единица) такой, что i2 = – 1.
2. Символ a + bi называют комплексным числом с действительной частью a и мнимой частью bi, где a и b – действительные числа, b – коэффициент мнимой части.
Комплексное число a + 0i отождествляется с действительным числом a, т.е. a + 0i = a, в частности, 0 + 0i = 0. Числа вида bi (b № 0) называют чисто мнимыми.
Например, комплексное число 2 + 3i имеет действительную часть – действительное число 2 и мнимую часть 3i, действительное число 3 – коэффициент мнимой части.
Комплексное число 2 – 3i имеет действительную часть число 2, мнимую часть – 3i, число – 3 – коэффициент при мнимой части.
3. Правило равенства. Два комплексных числа равны тогда и только тогда, когда равны их действительные части и равны коэффициенты мнимых частей.
Т.е., если a + bi = c +di, то a = c, b = d: и, обратно, если a = c, b = d, то a + bi = c +di.
4. Правило сложения и вычитания комплексных чисел.
(a + bi) + (c + di) = (a + c) + (b + d)i.
Например:
(2 + 3i) + (5 + i) = (2 + 5) + (3 + 1)i = 7 + 4i;
(– 2 + 3i) + (1 – 8i) = (– 2 + 1) + (3 + (– 8))i = – 1 – 5i;
(– 2 + 3i) + (1 – 3i) = (– 2 + 1) + (3 + (– 3))i =
= – 1 + 0i = – 1.
Вычитание комплексных чисел определяется как операция, обратная сложению, и выполняется по формуле:
(a + bi) – (c + di) = (a – c) + (b – d)i.
Например:
(5 – 8i) – (2 + 3i) = (3 – 2) + (– 8 – 3)i = 1 – 11i;
(3 – 2i) – (1 – 2i) = (3 – 1) + ((– 2) – (– 2))i = 2 + 0i = 2.
5. Правило умножения комплексных чисел.
(a + bi)(c + di) = (aс + bd) + (ad + bc)i.
Из определений 4 и 5 следует, что операции сложения, вычитания и умножения над комплексными числами осуществляются так, как будто мы выполняем операции над многочленами, однако с условием, что i2 = – 1.
Действительно: (a + bi)(c + di) = ac + adi + bdi2 = (ac – bd) + (ad + bc)i.
Например, (– 1 + 3i)(2 + 5i) = – 2 – 5i + 6i + 15i2 = – 2 – 5i + 6i – 15 = – 17 + i; (2 + 3i)(2 – 3i) = 4 – 6i + 6i – 9i2 = 4 + 9 = 13.
Из второго примера следует, что результатом сложения, вычитания, произведения двух комплексных чисел может быть число действительное. В частности, при умножении двух комплексных чисел a + bi и a – bi, называемых сопряженными комплексными числами, в результате получается действительное число, равное сумме квадратов действительной части и коэффициента при мнимой части. Действительно:
(a + bi)(a – bi) = a2 – abi + abi – b2i2 = a2 + b2.
Произведение двух чисто мнимых чисел – действительное число.
Например: 5i•3i = 15i2 = – 15; – 2i•3i = – 6i2 = 6, и вообще bi•di = bdi2 = – bd.
6. Деление комплексного числа a + bi на комплексное число c + di ≠0определяется как операция обратная умножению и выполняется по формуле:
.
Формула теряет смысл, если c + di = 0, так как тогда c2 + d2 = 0, т. е. деление на нуль и во множестве комплексных чисел исключается.
Обычно деление комплексных чисел выполняют путем умножения делимого и делителя на число, сопряженное делителю.
Например,
Приведем классификацию комплексных чисел:
Решение квадратных уравнений
Одна из причин введения комплексных чисел состояла в том, чтобы добиться разрешимости любого квадратного уравнения, в частности уравнения
x2 = – 1.
Покажем, что расширив поле действительных чисел до поля комплексных чисел, мы получили поле, в котором каждое квадратное уравнение разрешимо, т.е. имеет решение. Так, уравнение x2 = – 1 имеет два решения: x1 = i, x2 = – i.
Это нетрудно установить проверкой: i•i = i2 = – 1, (– i)•(– i) = i2 = – 1.
Перейдем теперь к вопросу о решении полного квадратного уравнения. Квадратным уравнением называют уравнение вида:
ax2 + bx + c = 0 (a≠0),
где x – неизвестная, a, b, c – действительные числа, соответственно первый, второй коэффициенты и свободный член, причем a a≠0. Решим это уравнение, выполнив над ним ряд несложных преобразований.
· Разделим все члены уравнения на a a≠0и перенесем свободный член в правую часть уравнения:
К обеим частям уравнения прибавим выражение с тем, чтобы левая его часть представляла полный квадрат суммы двух слагаемых:
Извлечем корень квадратный из обеих частей уравнения:
Найдем значения неизвестной:
Теперь можно исследовать полученное решение. Оно зависит от значения подкоренного выражения, называемого дискриминантом квадратного уравнения. Если b2 – 4ac > 0, то есть действительное число и квадратное уравнение имеет действительные корни. Если же – мнимое число, квадратное уравнение имеет мнимые корни.
Результаты исследования представлены ниже в таблице:
Итак, введение комплексных чисел позволяет разработать полную теорию квадратных уравнений. В поле комплексных чисел разрешимо любое квадратное уравнение.
Примеры.
1. Решите уравнение x2 – 2x – 8 = 0.
Решение. Найдем дискриминант D = b2 – 4ac = (– 2)2 – 4•1•(– 8) = 36 > 0.
Уравнение имеет два действительных корня:
2. Решите уравнение x2 + 6x + 9 = 0.
Решение. D = 62 – 4•1•9 = 0, уравнение имеет два равных действительных корня:
3. Решите уравнение x2 – 4x + 5 = 0.
Решение. D = 16 – 4•1•5 = – 4 < 0, уравнение имеет мнимые корни: