Приёмы развития смыслового чтения и работа с текстом на уроках математики
Приёмы развития смыслового чтения и работа с текстом
на уроках математики
Введение
Актуальной междисциплинарной учебной программой, предусмотренной новыми образовательными стандартами, является программа «Основы смыслового чтения и работа с текстом». Программа направлена на формирование и развитие основ читательской компетенции, необходимой обучающимся для осуществления своих дальнейших планов, в том числе, продолжения образования и самообразования, подготовки к трудовой и социальной деятельности. Сегодня чтение, наряду с письмом и владением компьютером, относится к базовым умениям, которые позволяют продуктивно работать и свободно общаться с разными людьми. Чтение является универсальным навыком: это то, чему учат, и то, посредством чего учатся. Как установили ученые, на успеваемость обучающегося влияет около 200 факторов. Фактор №1 – это навык чтения, который гораздо сильнее влияет на успеваемость, чем все вместе взятые. Исследования показывают: для того, чтобы быть компетентным по всем предметам и в дальнейшем в жизни, человек должен читать 120-150 слов в минуту.
Это становится необходимым условием успешности работы с информацией. Необходимо воспитать грамотного читателя.
Составляющие смыслового чтения.
Смысловое чтение – вид чтения, которое нацелено на понимание смыслового содержания текста. Для смыслового понимания недостаточно просто прочесть текст, необходимо дать оценку информации, откликнуться на содержание. Смысловое чтение является метапредметным результатом освоения образовательной программы основного общего образования, а также является универсальным учебным действием. Составляющие смыслового чтения входят в структуру всех универсальных учебных действий:
в личностные УУД – входят мотивация чтения, мотивы учения, отношение к себе и к школе;
в регулятивные УУД – принятие обучающимся учебной задачи, произвольная регуляция деятельности;
в познавательные УУД – логическое и абстрактное мышление, оперативная память, творческое воображение, концентрация внимания, объем словаря;
в коммуникативные УУД – умение организовать и осуществить сотрудничество и кооперацию с учителем и сверстниками, адекватно передавать информацию, отображать предметное содержание и условия деятельности в речи.
В научной литературе «стратегии смыслового чтения» понимаются как различные комбинации приемов, которые используют обучающиеся для восприятия графически оформленной текстовой информации и ее переработки в личностно-смысловые установки в соответствии с коммуникативно-познавательной задачей. По мнению Н.Н. Сметанниковой, стратегия это план-программа совместной деятельности, в которой очень много обучающийся работает самостоятельно под руководством учителя. В целом насчитывается около ста стратегий чтения, и согласно статистике, около 30-40 применяется в школе. Сущность стратегий смыслового чтения состоит в том, что стратегия имеет отношение к выбору, функционирует автоматически на бессознательном уровне и формируется в ходе развития познавательной деятельности. Обучение стратегии чтения включает в себя приобретение навыков:
различения типов содержания сообщений – факты, мнения, суждения, оценки;
распознавания иерархии смыслов в рамках текста – основная идея, тема и ее составляющие;
собственное понимание – процесс рефлексивного восприятия культурного смысла информации.
Овладение стратегиями происходит преимущественно в группах или парах, что позволяет выработать у обучающихся не только речевую, но и коммуникативную компетентность.
Одним из решений этой проблемы является организация систематической работы с учебником математики на каждом уроке и дома: до чтения, во время чтения и после чтения. К ключевым направлениям формирования умений работы с текстом относят следующие:
Y – YI классы
выделение главного в тексте;
составление примеров, аналогичных приведенным в тексте;
умение найти в тексте ответ на поставленный вопрос;
грамотно пересказать прочитанный текст.
Обязательный уровень и повышенный уровень
Определять назначение различных видов текста (математических понятий, математических правил, задач, диаграмм, графиков, таблиц, формул). Ставить перед собой цель чтения, выделять полезную в данный момент информацию. Сопоставлять и обнаруживать соответствие между частью текста и соответствующим рисунком. Объяснять назначение рисунка, диаграммы, таблицы, графика. Сопоставлять диаграммы и графики с текстом задачи и по данным диаграммам и графикам составлять текст, соответствующий поставленной задаче.
YII – YIII классы
Сопоставлять необходимые текстовые компоненты. Формулировать на основе текста систему логических аргументов, доводов при решении задач и доказательстве теорем. Объяснять смысл и назначение диаграмм, таблиц, графиков, геометрического рисунка. Пояснять геометрический чертеж. Сравнивать и сопоставлять заключенную в тексте информацию различного характера. Уметь читать графики и сопоставлять компоненты графиков и их частей. Составлять таблицы в соответствии с условиями задач или по данным графиков. Умение составить план прочитанного, пользоваться образцами решения задач, запоминание определений, формул, теорем. Находить в тексте требуемую информацию, необходимую для решения задач различного характера. Проводить проверку проведенного решения. Сопоставлять различные точки зрения и различные источники информации по данной теме. Выполнять смысловое свертывание выделенных фактов и мыслей. Связывать информацию, обнаруженную в тексте со знаниями, полученными из других источников. Оценивать утверждения, сделанные в тексте, исходя из своих знаний о предмете. Находить доводы в защиту своей точки зрения.
IX – XI классы
Структурировать текст, используя нумерацию страниц, ссылки, таблицы, изображения, графики. Сопоставлять различные точки зрения и различные источники информации по заданной теме. Формировать на основе данного текста систему аргументов для обоснования того или иного решения. Проводить проверку проведенного решения. Выделять необходимую на данный момент информацию, необходимую для решения тех или иных поставленных задач. Решать учебно-познавательные и учебно-практические задачи, используя различные виды текстов. Уметь прогнозировать последовательность изложений текста. Находить доводы в защиту своей точки зрения. Преобразовывать текст, используя различные формы представления информации: формулы, графики, диаграммы, таблицы. Переходить от одного представления данных к другому. Связывать информацию, полученную в тексте, с личным опытом. Прогнозировать последовательность изложения идей текста. Интерпретировать текст, используя различные диаграммы, графики, рисунки, чертежи (в том числе и динамические электронные в практических задачах). Обнаруживать в тексте доводы и подтверждения выдвинутых тезисов. На основе имеющихся данных, знаний, личного опыта работы с текстом выявлять содержащуюся в них противоречивую, конфликтную информацию, используя полученный опыт восприятия информационных объектов, высказывать оценочное суждение о прочитанном тексте. Конспектирование новой темы.
Работу по формированию умений и навыков самостоятельного чтения и понимания текста необходимо начинать с 5-го класса и проводить в системе, усложняя приемы и способы чтения и обработки информации от класса к классу.Варианты приёмов работы с текстом, задания, которые позволят расширить предметную область и способствуют формированию важнейших метапреметных умений.
1. Приём «Тонкие» и « толстые».
Вопросы такого плана возникают на протяжении всего урока математики. А также обучающимся предлагаю задания: составьте вопросы по теме, по тексту параграфа.«Тонкие» вопросы – вопросы, требующие простого, односложного ответа; «толстые» вопросы – вопросы, требующие подробного, развёрнутого ответа. (Приложение № ).
Стратегия позволяет формировать умение формулировать вопросы и умение соотносить понятия. После изучения темы обучающимся предлагается сформулировать по три «тонких» и три «толстых» вопроса, связанных с пройденным материалом. Затем они опрашивают друг друга, используя таблицы «толстых» и «тонких» вопросов.
«Толстые» вопросы
«Тонкие» вопросы
Объясните почему.?Почему вы думаете.?Предположите, что будет если?В чём различие?Почему вы считаете.?
Кто..? Что? Когда?Может? Мог ли?Было ли? Будет?Согласны ли вы?Верно ли?
2. Приём «Составление краткой записи задачи» (Приложение № )Формируется умение целенаправленно читать учебный текст, задавать проблемные вопросы, вести обсуждение в группе.
3. Приём «Составление вопросов к задаче» .
Анализ информации, представленной в объёмном тексте математической задачи, формулировка вопросов к задаче, для ответа на которые нужно использовать все имеющиеся данные; останутся не использованные данные; нужны дополнительные данные.
Виноград содержит 90% влаги, а изюм – 5%. Сколько килограммов винограда требуется для получения 20 килограммов изюма? (открытый банк заданий по математике ЕГЭ 2015)
Если изюм и виноград рассматривать как раствор сухого вещества в воде, то краткую запись условия задачи можно записать аналогично предыдущему примеру.
Поезд, двигаясь равномерно со скоростью 60 км/ч, проезжает мимо придорожного столба за 57 секунд. Найдите длину поезда в метрах.
Прежде чем заполнить таблицу, полезно применить приём составления динамической модели, чтобы определить, что длина поезда равна пройденному им расстоянию.
Какой же должна быть математика, чтобы все учащиеся полюбили этот предмет? На уроке желательно создать ситуацию, в которой дети приобретают знания в процессе активной познавательной деятельности. И, конечно же, ребенку на уроке должно быть интересно и понятно, зачем он изучает данный материал и где может применить полученные знания, независимо от того, в каком классе он обучается.
Решение контекстных задач, которые в методической литературе принято называть практико-ориентированными, являются одним из приёмов развития смыслового чтения, вовлечения обучающихся в процесс активной деятельности.
Приведу несколько примеров контекстных задач.
Из прямоугольного листа надо изготовить противень, вырезав по углам квадраты и загнув края вверх. Лист имеет размеры 39 см. и 24 см. Чему должна быть равна сторона вырезаемого квадрата, чтобы дно противня имело площадь 700 см2.
В задаче описывается некоторая жизненная ситуация и составленное уравнение представляет собой математическую модель этой ситуации. Но эта модель не полностью отражает реальные условия, не учтено, что 13 QUOTE 1415. Поэтому, найдя корни уравнения, приходится проверять их на соответствие условию задачи и отбросить тот, который ему не отвечает.
Теплоход рассчитан на 750 пассажиров и 25 членов команды. Каждая спасательная шлюпка может вместить 70 человек. Какое наименьшее число шлюпок должно быть на теплоходе, чтобы в случае необходимости в них можно было разместить всех пассажиров и всех членов команд? (открытый банк заданий по математике ЕГЭ 2015)
Данная задача заставляет проанализировать ситуацию, которая вполне может возникнуть в жизни учащихся. Проверяет умение проводить вычисления, включая округление и оценку результатов действий. При делении получается число, которое по правилу округляется в сторону недостатка. Но, исходя из контекста задачи, округление производим с избытком.
4. Приём «Вопросы к тексту учебника» (Приложение № )Стратегия позволяет формировать умение самостоятельно работать с печатной информацией, формулировать вопросы, работать в парахПо любой теме, начиная с 5 класса работать в системе подобному плану: 1. Прочитайте текст.2. Какие слова встречаются в тексте наиболее часто? Сколько раз? 3. Какие слова выделены жирным шрифтом? Почему? 4. Если бы вы читали текст вслух, то, как бы вы дали понять, что это предложение главное? Речь идет о выделении фразы голосом. Здесь скрывается ненавязчивое, но надежное заучивание.
5. Приём «Учимся задавать вопросы разных типов» – « Ромашка Блума» (Приложение № )
Шесть лепестков – шесть типов вопросов.Простые вопросы.
Отвечая на них, нужно назвать какие-то факты, вспомнить, воспроизвести некую информацию. Применяю на традиционных формах контроля: на зачетах, при использовании терминологических диктантов и т.д. (Приложение )
Уточняющие вопросы. Обычно начинаются со слов: «То есть ты говоришь, что...?», «Если я правильно поняла, то...?», «Я могу ошибаться, но, по-моему, вы сказали о...?». Целью этих вопросов является предоставление обратной связи обучающемуся относительно того, что он только что сказал. Очень важно эти вопросы задавать без негативной мимики.
Интерпретационные (объясняющие) вопросы. Обычно начинаются со слова «Почему?». В некоторых ситуациях (как об этом говорилось выше) могут восприниматься негативно – как принуждение к оправданию. В других случаях – направлены на установление причинно-следственных связей. Если учащийся знает ответ на этот вопрос, тогда он из интерпретационного «превращается» в простой. Следовательно, данный тип вопроса «срабатывает» тогда, когда в ответе на него присутствует элемент самостоятельности.
Творческие вопросы. Когда в вопросе есть частица «бы», а в его формулировке есть элементы условности, предположения, фантазии прогноза. «Что бы изменилось в ., если бы .?», «Как вы думаете, как будет .?».Оценочные вопросы. Эти вопросы направлены на выяснение критериев оценки тех или фактов. «Чем отличается от ?» и т.д.(Приложение № )
Практические вопросы. Это вопросы, направленные на установление взаимосвязи между теорией и практикой. Например: «Где вы в обычной жизни могли бы наблюдать симметрию?».(Приложение № )
6.Приём «Тетрадь с печатной основой»
Часто применяется для структурирования и преобразования информации текста учебника при выполнении заданий «Прочитай текст учебника на стр., пользуясь введёнными терминами, опиши линии и заполни таблицу».7. Приём «Инсерт» (Приложение № )Прием «Инсерт» – это маркировка текста по мере его чтения.Применяется для стимулирования более внимательного чтения. Чтение превращается в увлекательное путешествие.
1.Чтениие индивидуальное.
Читая, ученик делает пометки в тексте:
V – уже знал;
– новое;
– – думал иначе;
? – не понял, есть вопросы.
2. Читая, второй раз, заполняют таблицу, систематизируя материал.
Уже знал (V)
Узнал новое (+)
Думал иначе (–)
Есть вопросы (?)
Записи делают краткие, ключевые слова, фразы. Заполнив таблицу, обучающиеся будут иметь мини-конспект. После заполнения обучающимися таблицы обобщаем результаты работы в режиме беседы. Если у обучающихся возникли вопросы, то отвечаю на них, предварительно выяснив не может ли кто-то из обучающихся ответить на возникший вопрос. Этот приём способствует развитию умения классифицировать, систематизировать поступающую информацию, выделять новое.(Приложение )
8.Приём «Кластер» (Приложение № )
Кластеры использую для структуризации и систематизации материала. Кластер – способ графической организации учебного материала, суть которой заключается в том, что в середине листа записывается или зарисовывается основное слово (идея, тема), а по сторонам от него фиксируются идеи (слова, рисунки), с ним связанные.Предлагаю обучающимся прочитать изучаемый материал и вокруг основного слова (тема урока) выписать ключевые, по их мнению понятия, выражения, формулы. А затем вместе в ходе беседы или обучающиеся работая в парах, группах наполняют эти ключевые понятия, выражения, формулы необходимой информацией.(Приложение № )
9. Приём «Ключевые слова» (Приложение № )
Это слова, по которым можно составить рассказ или определения некоторого понятия.
10. Приём «Верные и неверные утверждения» (Приложение № ) Универсальный прием, способствующий актуализации знаний учащихся и активизации мыслительной деятельности. Данный прием дает возможность быстро включить детей в мыслительную деятельность и логично перейти к изучению темы урока.Стратегия формирует умение оценивать ситуацию или факты, умение анализировать информацию, умение отражать свое мнение. Детям предлагается выразить свое отношение к ряду утверждений по правилу: верно – «+», не верно – «-».
11. Приём «Верите ли вы» (Приложение № )
Проводится с целью вызвать интерес к изучению темы и создать положительную мотивацию самостоятельного изучения текста по этой теме. Проводится в начале урока, после сообщения темы.
12. Приём «Синквейн» (Приложение № )
Развивает умение обучающихся выделять ключевые понятия в прочитанном, главные идеи, синтезировать полученные знания и проявлять творческие способности.
Структура синквейна:
Существительное (тема).
Два прилагательных (описание).
Три глагола (действие).
Фраза из четырех слов (описание).
Существительное (перефразировка темы).
Функция
Квадратичная, необходимая
Строить, исследовать, применять
Функция-это красиво, важно!
Прием «Ассоциативный куст»: учитель пишет ключевое слово или заголовок текста, учащиеся один за другим высказывают свои ассоциации, учитель записывает. Использование этого приема позволяет актуализировать знания, мотивировать последующую деятельность, активизировать познавательную деятельность учащихся, настроить их на работу.
2. Ученики про себя читают небольшой по объему текст или часть текста, останавливаясь на указанных местах.
3. Учитель задает проблемный вопрос по прочитанному.
4. Ответы нескольких учеников обсуждают в классе.
5. Ученики делают предположение относительно дальнейшего развития события.
13 SHAPE \* MERGEFORMAT 1415
Овладение стратегиями происходит преимущественно в группах или парах, что позволяет выработать у учеников не только речевую, но и коммуникативную компетентность.
Стратегия №2. Чтение в парах – обобщение в парах.
Цель: сформировать умение выделять главное, обобщать прочитанное в виде тезиса, задавать проблемные вопросы.
1. Ученики про себя читают выбранный учителем текст или часть текста.
2.Учитель объединяет учащихся в пары и дает четкий инструктаж. Каждый ученик поочередно выполняет две роли: докладчик – читает и обобщает содержание в виде одного тезиса; респондент – слушает докладчика и задает ему два вопроса по существу. Далее происходит смена ролей.
3.Учитель привлекает всех учащихся к обсуждению.
Стратегия № 3.Читаем и спрашиваем
Цель: сформировать умение самостоятельно работать с печатной информацией, формулировать вопросы, работать в парах.
1.Ученики про себя читают предложенный текст или часть текста, выбранные учителем.
2.Ученики объединяются в пары и обсуждают, какие ключевые слова следует выделить в прочитанном. (Какие слова встречаются в тексте наиболее часто? Сколько раз? Какие слова выделены жирным шрифтом? Почему?
Если бы вы читали текст вслух, то, как бы вы дали понять, что это предложение главное? Речь идет о выделении фразы голосом. Здесь скрывается ненавязчивое, но надежное заучивание.)
3.Один из учеников формулирует вопрос, используя ключевые слова, другой – отвечает на него.
4.Обсуждение ключевых слов, вопросов и ответов в классе. Коррекция.
Виды вопросов и заданий к текстам (по математике).
Существуют различные типы заданий, которые позволяют развивать и проверять навыки чтения.
Задания «множественного выбора»:
1) выбор правильного ответа из предложенных вариантов;
2) определение вариантов утверждений, соответствующих/не соответствующих
содержанию текста/не имеющих отношения к тексту;
3) установление истинности/ложности информации по отношению к содержанию текста.
Задания «на соотнесение»:
1) нахождение соответствия между вопросами, названиями, утверждениями,
пунктами плана, знаками, схемами, диаграммами и частями текста
(короткими текстами);
2) нахождение соответствующих содержанию текста слов, выражений, предложений, формул, схем, диаграмм и т.д.
3) соотнесение данных слов (выражений) со словами из текста.
Задания «на дополнение информации»:
1) заполнение пропусков в тексте предложениями/несколькими словами/одним
словом/формулой.
2) дополнение (завершение) предложений/доказательств.
Задания «на перенос информации»:
1) заполнение таблиц/схем на основе прочитанного;
2) дополнение таблиц/схем на основе прочитанного.
Задания «на восстановление деформированного текста»:
1) расположение «перепутанных» фрагментов текста в правильной
последовательности.
2) «собери» правило, алгоритм.
3) «найди ошибку»
Задания с ответами на вопросы могут иметь различные целевые установки и
соответственно различаться по степени сложности. В зависимости от цели и конкретного содержания вопросы можно разделить на три основные группы.
1. Поиск и целенаправленное извлечение информации («Общее понимание
текста» и «Выявление информации»):
нахождение фактического материала – в основном вопросы кто (что)? где? когда? для чего?
определение темы;
выявление информации, явно невыраженной в тексте.
2. Обобщение и интерпретация содержания текста («Интерпретация текста»):
нахождение в тексте заданной информации;
нахождение в тексте данных, иллюстрирующих определённую мысль;
использование информации из текста для подтверждения своей гипотезы;
установление смысловых связей между частями текста или двумя
(несколькими) текстами;
определение основной мысли (идеи) текста;
соотнесение конкретной детали с общей идеей текста;
выяснение намерений автора текста;
интерпретация (комментирование) названия текста;
формулирование вывода на основании анализа информации, представленной в тексте.
3. Оценка содержания и формы текста, рефлексия («Рефлексия содержания» и «Рефлексия формы подачи текста»):
сопоставление содержания текста с собственным мнением;
соотнесение информации текста с собственным опытом;
обоснование своей точки зрения на основе ранее известной информации и сведений из текста;
оценка утверждений, содержащихся в тексте, с учетом собственных знаний и системы ценностей;
определение назначения, роли иллюстраций;
«предугадывание» алгоритма;
«предвидение» событий за пределами текста, исходя из содержащейся в нем информации;
определение жанра и стиля текста;
Одним из этапов урока является этап актуализации прежних знаний, который позволяет развивать творческое мышление обучающихся, благодаря существованию большого числа заданий.
Многие полагают, что актуализация – это то же самое, что и опрос, «только термин новый». Но это далеко не так. Значение самого слова «актуализация» говорит о том, что надо сделать знания актуальными, нужными в данный момент, то есть «освежить» прежние знания и способы деятельности в памяти. Более того, актуализация означает и психологическую подготовку ученика: возбуждение его интереса к теме (проблеме), создание эмоционального настроя, оценку степени готовности отдельных учеников к восприятию нового материала.
Первый этап урока математики в 5 – 6 классах – устные упражнения. Цель этого этапа, во-первых, подготовить учащихся к продуктивной работе на протяжении всего урока, значит, среди этих упражнений должны быть задания на восстановление опорных знаний и умений. Во-вторых, постоянная работа по поддержанию и совершенствованию ранее сформированных знаний и умений, в частности, вычислительных навыков, и, в-третьих, способствовать развитию обучающихся, в особенности развитию творческого мышления.
Устные упражнения содержат огромные потенциальные возможности для развития мышления, активизации познавательной деятельности учащихся.
Использование устных упражнений сокращает число заданий на уроке, требующих полного письменного оформления, что приводит к более эффективному развитию речи, мыслительных операций и творческих способностей учащихся.
Смысловое чтение, как универсальное действие формируется благодаря использованию учителем следующих технологий, форм работы:
технологии проблемного обучения;
интерактивных технологий;
технологии критического мышления.
Учитывая стратегии современных подходов к чтению, можно порекомендовать учителям предметникам следующее:
выбирать наиболее рациональные виды чтения для усвоения обучающимися нового материала;
формировать у обучающихся интерес к чтению путем внедрения нестандартных форм и методов работы с текстом;
определять характер деятельности различных групп обучающихся при работе с учебником;
предвидеть возможные затруднения обучающихся в тех или иных видах учебной деятельности;
повышать уровень самостоятельности обучающихся в чтении по мере их продвижения вперед;
организовывать различные виды деятельности обучающихся с целью развития у них творческого мышления;
обучать самоконтролю и самоорганизации в различных видах деятельности.
Рассмотренные мною приёмы смыслового чтения на уроках математики способствуют формированию метапредметных результатов освоения основной образовательной программы основного общего образования.
Устные вычисления как способ формирования познавательных универсальных учебных действий. В сочетании с иными видами упражнений активизируют мыслительную деятельность, развивают логическое мышление, сообразительность, память, творческие начала и волевые качества, наблюдательность и математическую зоркость, способствуют развитию речи учащихся, если с самого начала обучения вводить в тексты заданий и использовать при обсуждении упражнений математические термины.
Практическое значение устных вычислений состоит в том, что быстрота и правильность вычислений необходимы в жизни, особенно в тех случаях, когда письменно выполнить действия не представляется возможным.
Необходимо отметить, что уровень трудности упражнений должен постепенно увеличиваться.
Таким образом, возникает необходимость естественного усовершенствования устных упражнений, разработки системы таких упражнений, в которой прослеживается их логическая взаимосвязь.
В данной работе рассматривается разнообразие наиболее распространённых и интересных видов устных упражнений.
Заключение
В курсе изучения математики начальных классов центральной задачей является формирование вычислительных навыков.
А так как формирование вычислительных навыков невозможно без продуманной организации устного счета, то овладение навыками устных вычислений имеет большое образовательное, воспитательное и практическое значение. Роль устных упражнений бесспорно велика. Необходимо отметить, что применение различных приёмов проведения устного счета, использование элементов игры, соревнования, несложных наглядных пособий и технических средств делают учебный процесс более интересным, дети чаще проявляют свою активность, находчивость, сообразительность и добиваются порой самых высоких для себя результатов.
Работа над приёмами организации устного счета должна вестись с первого класса.
Ведь чем больше внимания будет уделяться изучению приёмов устных вычислений, тем лучше дети окажутся подготовленными к изучению письменных приёмов и вычислений.
В предложенной работе систематизированы наиболее интересные и распространённые упражнения на развитие устных вычислительных навыков у учащихся начальных классов. Данная работа будет полезна учителю при подготовке к урокам и их проведении.
Упражнения предложены по форме: название, цель упражнения, инструктаж по организации работы.
В формулировке названий упражнений отражена суть задания, занимательный момент игры, тренажера и других упражнений.
Общей особенностью предлагаемых упражнений является преобладание игровых моментов, красочности оформления, важности тем в математике, по которым предлагаются задания. В данной работе стремилась к тому, чтобы все устные упражнения были максимально доступны младшему возрасту учащихся, многообразны и основаны на активном участии детей в процессе усвоения необходимых навыков счета.
Также предлагаю приложения с красочно оформленным дидактическим материалом, который не всегда можно найти в учебном кабинете.
Ставлю перед собой задачу продолжить работу по данной теме и разрабатывать новые дидактические игры и другие упражнения для организации устного счета на уроках математики.
Литература
Асмолов А. Г. Системно – деятельностный подход к разработке стандартов нового поколения / / Педагогика, 2009. №4. – с. 18 – 22.
А.Г. Асмолова- формирование универсальных учебных действий в основной школе: от действия к мысли. Система заданий: пособие для учителя/– М.:Просвещение, 2010.
С. И. Заир – Бек, И, В. Муштавинская- развитие критического мышления на уроке: пособие для учителей общеобразоват. учреждений / – 2 – е изд., дораб. – М .: Просвещение, 2011. – 223 с. : ил. – (Работаем по новым стандартам).
Федеральный государственный образовательный стандарт основного общего образования / и науки Рос. Федерации. – М.: Просвещение, 2011. – 48с. – (Стандарты второго поколения).
Открытый банк заданий по математике ЕГЭ 2015.
http://mathege.ru
хІ=-25
способ решения
Дробно-рациональное
приведённое, его корни.
Теорема Виета.
пример
если полное, его корни
дискриминант
Д=
нант
линейное
квадратное
уравнение
Рисунок 28ђЗаголовок 115