Разработка урока геометрии 8 класс

Разработка урока геометрии в 8-м классе "Площадь параллелограмма"
[ Cкачайте файл, чтобы посмотреть ссылку ] Надежда Викторовна, учитель математики
Цели урока:
развитие логического мышления учащихся;
повторение и закрепление пройденных определений и значений;
развитие и закрепление навыков, выполняя тесты и примеры с помощью компьютера.
Задачи урока:
Образовательные:
повторение и закрепление знаний учащихся о площади прямоугольника;
формирование у школьников умений анализировать, сравнивать, обобщать, выводить формулу площади параллелограмма;
Развивающие:
развитие логического мышления учащихся;
развитие познавательного интереса учащихся;
Воспитательные:
повышение мотивации учащихся за счет компьютерных технологий;
воспитание у ребят дружелюбного отношения друг другу, умение работать в коллективе;
развитие творческих способностей учащихся.
Оборудование урока:
компьютер учителя;
мультимедийный проектор, экран;
макеты параллелограммов;
компьютерная презентация, подготовленная в Microsoft PowerPoint;
тесты, подготовленные в программе Unitest.
План урока.
1. С помощью компьютерной презентации актуализация знаний учащихся;
2. Объяснение нового материала и решение задач;
3. Контроль знаний учащихся по пройденной теме с помощью тестов;
4. Домашнее задание;
5. Заключение.
6. Литература
Ход урока
Здравствуйте ребята. Сегодня мы начинаем урок геометрии в кабинете информатики. Обратите внимание на экран. Начнем урок с повторения. Вопросы увидите на экране.
Приложение 1 – компьютерная презентация
[ Cкачайте файл, чтобы посмотреть картинку ]
1) Основные свойства площади
Ожидаемые ответы:
а) площади равных многоугольников равны; б) площадь многоугольника равна сумме площадей составляющих его многоугольников; в) площадь квадрата равна квадрату стороны.
[ Cкачайте файл, чтобы посмотреть картинку ]
2) Как называется эта фигура?
[ Cкачайте файл, чтобы посмотреть картинку ]
Прямоугольник.
3) Как вычисляется площадь прямоугольника?
Площадь прямоугольника равна произведению смежных сторон
4) Найдите площадь прямоугольника со сторонами 5 см и 12 см
S = a * b = 5 * 12 = 60 см2
5) Найдите площадь фигуры изображенной на рисунке
[ Cкачайте файл, чтобы посмотреть картинку ]
Ожидаемый ответ:
Невозможно найти или не умеем находить.
Учащиеся могут дать ответ “Площадь равна 48” или какой-нибудь другой ответ. В таком случае демонстрируется рисунок прямоугольника со сторонами 6 см и 8 см, и задаются следующие вопросы:
а) а чему равна площадь данной фигуры? (48) б) равны ли площади двух фигур? (нет) в) название первой фигуры? (параллелограмм)
[ Cкачайте файл, чтобы посмотреть картинку ]
Учащиеся выясняют, что они пока не умеют вычислять площадь параллелограмма, и приходят к выводу, что тема сегодняшнего урока “Площадь параллелограмма”.
- Как называется данная фигура? (определение параллелограмма)
- Какие свойства параллелограмма вы знаете? (заслушиваются свойства параллелограмма)
- Для вычисления площади параллелограмма, познакомимся с двумя элементами. Назовем одну сторону параллелограмма основанием, а отрезок перпендикулярный основанию и включающий любую точку противоположной стороны – высотой.
-Какая сторона является основанием? (отвечают по чертежу параллелограмма)
Ответ: АВ
-Укажите высоту.
Ответ: КМ
На представленных рисунках, какие отрезки являются основанием и высотой параллелограмма? (учащиеся отвечают по заранее подготовленному плакату, приложение 2)
№1 основание АД, высота ВН. №2 основание АД, высота ВН. №3 основание ВА, высота СН. №4 основание СД, высота ВН.
Продолжим изучение темы с помощью компьютера.
[ Cкачайте файл, чтобы посмотреть картинку ]
Взяв сторону АД за основание, проведем перпендикуляры с точек В и С. Получим трапецию АВСК. Используя свойства площади многоугольника, запишем формулу вычисления площади трапеции.
SАВСК= SАВСД+SСДК= SВНКС+SАВН
[ Cкачайте файл, чтобы посмотреть картинку ]
Сравним треугольники СДК и АВН.
АВ = СД (противоположные стороны параллелограмма)
угол 1 = угол 2 (соответственные углы)
Следовательно, D АВН= D СДК и поэтому, SАВН = SСДК.
Отсюда, делаем вывод: SABCD + SCDK = SBHKC + SABH
SABCD = SBHKC
SABCD = BC · BH = AD · BH
Площадь параллелограмма равна произведению высоты и основания.
Проверим правильность данной теоремы на практике.
Один ученик у доски, измеряет высоту и основание заготовленного заранее макета параллелограмма. Второй ученик вычисляет его площадь. Третий ученик с помощью ножниц из параллелограмма составляет прямоугольник, и вычисляет его площадь.
[ Cкачайте файл, чтобы посмотреть картинку ]
По вычисленным значениям площадей учащиеся делают вывод.
А теперь снова обратим внимание на экран. Вместе посмотрим образцы решения задач.
№1
[ Cкачайте файл, чтобы посмотреть картинку ]
№2
[ Cкачайте файл, чтобы посмотреть картинку ]
2. Решение задач для закрепления пройденного материала.
№ 459 из учебника выполняется вместе с учащимися. А №461, №463 ученики решают самостоятельно.
3. Выполнение тестовых заданий для проверки знаний по изученному материалу.
На компьютерах запускается тестовая программа (приложение 3, архив rar). Напоминаем правила работы с программой.
Каждый ученик отвечает на вопросы теста.  
4. Заключение.
Подводится итог, выставляются отметки.
Анализируются результаты теста.
5. Домашнее задание.
§ 51.
№459(в, г), №460 – всем учащимся.
№464 – дополнительное задание одаренным.
6. Литература использованная при подготовке урока:
Атанасян Л. С. и др Геометрия 8 – 9.
Журнал “Математика в школе”.
Математика, еженедельное учебно-методическое приложение к газете “Первое сентября”.

Заголовок 1 Заголовок 315