Урок математики Сочетательное свойство сложения (в технологии деятельностного метода).
Урок математики во 2 классе.
Жвакина Наталья Вячеславовна, учитель начальных классов.
Муниципальное автономное общеобразовательное учреждение
«Средняя общеобразовательная школа №65 с углубленным изучением английского языка» г. Перми
СОЧЕТАТЕЛЬНОЕ СВОЙСТВО СЛОЖЕНИЯ
1. Мотивация к учебной деятельности.
Слайд 1. Я желаю вам сегодня добра.
Ты желаешь мне сегодня добра.
Если вам будет трудно, я помогу.
Улыбнёмся друг другу.
Слайд 2. Предлагаю вам отправиться сегодня в лес.
Прежде чем мы начнём наш урок, ответьте на такой вопрос: кто из животных на Земле является самым сильным?
Слайд 3. (Загадки)
Вы будете удивлены, но одним из самых сильных животных является муравей. Слайд 4.
Какие качества муравья могут быть примером для подражания? (Трудолюбие, взаимовыручка, взаимопомощь, работоспособность, упорство, целеустремлённость, ) Слайд 5.
Пусть эти муравьишки напоминают вам о перечисленных качествах, потому что эти качества понадобятся вам и на сегодняшнем уроке. Муравьи являются самыми сильными животными, так как способны переносить груз, во много раз превышающий собственный вес и соломинки которые они носят для них, как для нас большие бревна. И наши муравьишки принесли с собой большие веточки, чтобы построить муравейник. Слайд 6.
Давайте поможем им построить муравейник, принесем им соломинки для строительства. (После выполнения каждого задания добавляются соломинки-брёвнышки на слайдах 14, 23, 28, 29)
Сегодня на уроке нам предстоит вновь совершить открытие. Вы готовы? Кто скажет как мы для этого построим свою работу? (Мы должны сами понять, что мы еще не знаем, постараться самим «открыть» новое.) Слайд 7.
С чего начнете свою работу? (С повторения необходимых знаний.) Слайд 8.
Найдите в конвертах зеленые карточки Слайд 9.
Что записано рядом с буквами? (выражения)
Чем отличаются столбики выражений? (1 – со скобками, 2 – без скобок)
Что поможет выполнить это задание? (Знание порядка действий.)
Учитель вывешивает на доску эталон. Слайд 10.
Прокомментируйте эталон. А можно нарушить порядок действий?
Какое задание вы получили? (Нужно найти значение выражений.) Слайд 11.
Чему будет посвящен сегодняшний урок? (Изучению выражений.)
Я желаю вам удачи в работе на уроке.
2. Актуализация знаний и фиксация индивидуального затруднения в пробном действии.
Выполните действия на карточках и расшифруйте слово.
Учащиеся выполняют задание самостоятельно на карточках.
Какое слово получили? (Свойство.) Слайд 12.
Как вы понимаете это слово? (Качество, признак, способность отличающие один предмет от другого.)
Какие вы знаете свойства фигур – например, сторон прямоугольника, луча? (Противоположные стороны прямоугольника равны, луч можно продолжить в одном направлении.)
Какие вы знает свойства чисел? (Например, если слагаемые увеличиваются, то сумма увеличивается, при сложении с 0 получается то же самое число, переместительное)
Актуализация переместительного свойства.
Учитель открывает на экране эталон переместительного свойства Слайд 13.
Сформулируйте его. Переместительное свойство сложения: при перестановке слагаемых значение суммы не изменяется.
Прокомментируйте свойство. (Если сложить части а и b, получим весь отрезок, если сложим части b и а, то получим тот же отрезок.)
Значит, от чего значение суммы не зависит? (От порядка слагаемых.)
Для чего используют переместительное свойство? (для удобства
вычислений.)
Значения, каких выражений вы легко, быстро нашли?
Учитель выписывает выражения на доску:
Почему вы легко нашли значение выражений? (В первом выражении мы сначала складываем числа, где получаем 100; во втором сначала получаем 0, в третьем – легко сложить два одинаковых слагаемых, а затем прибавить 16 к 14, так как получается круглое число.)
(Награда-помощь муравьям)
3) Задание для пробного действия.
Что вы повторили? (Повторили, где мы встречаем слово «свойство», вспомнили известные свойства, повторили переместительное свойство, что переместительное свойство помогает быстро складывать, как изобразить это свойство на отрезке, порядок действий)
Почему я выбрала именно это? (Это нам пригодится для открытия нового знания.)
Что теперь я вам предложу? (Задание, в котором будет что-то новое.) Слайд 15.
Зачем вы его получите? (Чтобы мы сами узнали, что мы еще не знаем.)
Достаньте из конверов желтые карточки Слайд 16.
Что вы можете сказать об этом выражении? (В нем два действия, оба сложения, есть скобки, воспользуемся эталоном порядка действий)
Нужно за 30 секунд найти значение этого выражения.
Что нового в этом задании? (Наверное то, что мы должны быстро вычислить.)
Попробуйте выполнить это задание.
Учащиеся выполняют задание на карточках самостоятельно.
Итак, время истекло. Кто не выполнил это задание?
Учащиеся поднимают руки. Вероятнее всего, что большинство детей не смогут выполнить это задание за ограниченный промежуток времени.
Что вы не смогли сделать? (Быстро решить данный пример.)
Кто нашел значение выражения?
Учащиеся поднимают руки. Учитель записывает все варианты на доску.
Почему получились разные ответы? (Мы не знаем, как быстро правильно решить этот пример, у нас нет для этого эталона.)
ФИЗКУЛЬТМИНУТКА
3. Выявление места и причины затруднения.
Какое задание выполняли? (Должны были за короткий промежуток времени решать пример.)
Каким способом вы пытались воспользоваться? (Порядком действий.)
В чем затруднение? (Данный способ требует много времени.)
Почему же возникло затруднение? (Этот способ не подходит, у нас нет удобного, быстрого способа.)
4. Построение проекта выхода из затруднения.
Какую цель поставите перед собой на уроке? (Узнать быстрый способ нахождения значения выражения, где все действия сложение.) Слайд 17.
Вспомните задания, которые вы выполняли при повторении. Когда вы быстро считали? Что вам может помочь. (Свойства чисел.) Слайд 18.
В вашем случае, что нужно сделать? (Сделать так, чтобы числа было складывать удобно.)
Сделайте предположения, выдвиньте гипотезы, как было бы удобно складывать? Что при этом мы нарушаем? (Порядок действий)
Как можно проверить наши гипотезы?
Что вам поможет это сделать? Какое свойство вы повторили в начале урока? (Переместительное.)
Как оно изображено? (на отрезке.)
Как это может вам помочь? (Мы данное выражение изобразим на отрезке, попробуем найти удобные пары чисел, сделаем вывод.) Слайд 19.
5. Реализация построенного проекта.
Сегодня я предлагаю поработать вам в группах. Вспомните основные правила работы. (Каждый имеет право высказаться, другие должны выслушать. Группа должна работать так, чтобы не мешать другим группам,)
Попробуйте в группах выполнить план ответив на вопросы и выполнив задание:
на сколько частей разделили отрезок? ( .)
как обозначили каждую часть? (Числами ,,..)
как по-разному можно найти сумму (целое)?
1.
2.
Найдите значение выражений. (1. , 2. ..)
Что изменяли в выражениях? (.)
От чего не зависит значение суммы, для чего используют это свойство сложения?
на сколько частей разделили отрезок? (На три.)
как обозначили каждую часть? (Числами 456, 99, 1.)
как по-разному можно найти сумму (целое)?(1.Сложить числа 456 и 99, а потом прибавить1; 2.сложить числа 99 и 1, а потом прибавить 456)
Найдите значение выражений. (556.)
Что изменяли в выражениях? (Порядок действий.)
От чего не зависит значение суммы, для чего используют это свойство сложения?
(Значение суммы не зависит от порядка действий)
Вариант представления:
Мы разделили отрезок на три части. Обозначили каждую часть числами 456, 99 и 1. Мы увидели, что можно сложить сначала 99 и 1, а потом полученную сумму прибавить к числу 456. От этого значение суммы не измениться. Поэтому в выражении можно изменить порядок действий, перенеся скобки и быстро вычислить результат. Значение этого выражения равно 556. Слайд 20.
Далее работа организуется по выведению основного вывода и эталона.
Что надо сделать, чтобы можно этим способом воспользоваться в следующий раз? (Надо составить эталон.) Слайд 21.
Что будет на эталоне? (Отрезок и запись в буквенном виде.)
Предложить учащимся составить эталон в группах самостоятельно.
В случае возникновения затруднений, организуется подводящий диалог:
Как обозначите части отрезка? (а, b, с.)
Как обозначите целое?
Какое равенство составите? ((а + b) + с = а + (b + с).) Слайд 22.
Посмотрите на два свойства сложения. От чего не зависит значение суммы? (Свойства сложения показывают, что значение суммы не зависит от порядка слагаемых и порядка действий.)
Как проверить сделанные выводы? (Нужно посмотреть в учебнике.)
Прочитайте правило на странице 41.
Один из учащихся читает правило вслух.
Сделайте вывод. (Мы все открыли верно.)
В математике это свойство называется сочетательным. Как вы думаете, почему? (С помощью скобок сочетаются, т.е соединяются другие слагаемые.)
Учитель вывешивает эталон.
(Награда-помощь муравьям)
ФИЗКУЛЬТМИНУТКА
Смогли вы преодолеть затруднение? (Да.)
Что теперь вы можете? (Решать быстро примеры с действием сложения.)
Какой следующий шаг на уроке? (Потренироваться в использовании свойств сложения.)
Слайд 24.
6. Первичное закрепление с проговариванием во внешней речи.
1) Фронтальная работа.
Возьмите синюю карточку
Учитель заранее выносит задание на доску. Учащиеся по цепочке выходят к доске и выполняют задание с комментированием.
34+18+166+72 (798+2)+15=
798+(15+2) (97+3)+(95+5)=
97+(3+95)+5 (34+166)+(18+72)=
2) Работа в парах.
Выполните примеры в парах
(14+67)+3=
12+14+18+16=
Учащиеся выполняют данное задание в парах с комментированием. Проверки организуется по образцу Слайд 25.
Кто ошибся?
В чем ошибка?
Исправьте свою ошибку.
(Награда-помощь муравьям)
Что теперь вам необходимо сделать? (Проверить, сумеем ли мы выполнить данные задания самостоятельно.) Слайд 27.
7. Самоконтроль с самопроверкой по эталону.
Решите примеры самостоятельно на розовой карточке.
(53+96)+4=
15+137+85+3=
Учащиеся выполняют работу самостоятельно на подготовленных листочках. Проверка организуется по образцу Слайд 28.
Кто из вас ошибся?
В чем ошибка? (Не правильно поставил скобки, не нашел удобные слагаемые, ...)
Исправьте ошибку.
Сделайте вывод. (Нужно еще потренироваться.)
Кто не ошибся?
Сделайте вывод. (Мы все хорошо усвоили.)
(Награда-помощь муравьям)
9. Рефлексия учебной деятельности на уроке.
Какую цель вы ставили пред собой на уроке? (Открыть способ быстрого нахождения значения выражения, в котором все действия сложение.)
Вам удалось достичь цели? (Да.)
Кому удалось «открыть» новое самому?
Кому не удалось? Почему?
Теперь я предлагаю вам оценить свою работу на уроке. Положите перед собой «лестницу успеха». Покажите, на какой ступеньке вы находитесь в конце урока. Если вы выполнили самостоятельную работу без ошибок, и у вас нет вопросов, то поставьте себя на верхнюю ступеньку. Если вы выполнили самостоятельную работу, но у вас остались вопросы, поставьте себя на среднюю ступеньку. Если вы ошиблись в самостоятельной работе, у вас остались вопросы, поставьте себя на нижнюю ступеньку. Слайд 30.
Учащиеся по желанию сообщают о своих результаты на «лестнице успеха»
Какие качества проявили те, кто смог достичь цели? (Трудолюбие, усердие, упорство, целеустремлённость, )
Тем ребятам, которым не удалось достичь цели, я ещё раз советую не огорчаться и помнить, что только через воспитание в себе соответствующих качеств вы обязательно будете достигать поставленных целей. Посмотрите ещё раз на муравьишек и скажите, без каких качеств не обойтись в вашей работе, так как не всем сразу удаётся что-то понять, разобраться в чём-то? (Терпение, упорство, трудолюбие, )
Заканчивая урок, я хочу вам пожелать, чтобы те человеческие качества, которые помог вам вспомнить образ муравьишек, стали вашими человеческими качествами.
В конце урока отгадайте еще одну загадку. Слайд 31.
Возле ёлок из иголок
Летним днём построен дом,
За травой не виден он,
А жильцов в нём миллион. (Муравейник) Слайд 32.
Что делают мальчики? Слайд 33.
Высказывания детей о нарушении правила поведения в лесу.
А знате ли вы что Слайд 34.
Муравьи никогда не спят.
В мире почти столько же видов
муравьев (8800) сколько птиц (9000).
Живое существо с самым большим
мозгом по отношению к телу – муравей.
Как много интересного в лесу! Надо только уметь
смотреть,
слушать,
наблюдать Слайд 35.
Какие вопросы остались на конец урока?
Как и где их можно развеять? (В домашней работе).
Дом.задание: составить и решить задачу про муравьев с использованием сочетательного свойства в решении.
Данное выражение изобразить на отрезке, попробовать найти неизвестное по-разному, найти значение выражений, записать равенство, сделать вывод
Прокоментировать:
1.На сколько частей разделить отрезок? Как обозначить целое и части?
2. Что и как можно найти по-разному?
3. Найдите значение выражений.
4.Что изменяли в выражениях. Сделайте вывод.
5.Для чего используют это свойство?
Данное выражение изобразить на отрезке, попробовать найти неизвестное по-разному, найти значение выражений, записать равенство, сделать вывод
Прокоментировать:
1.На сколько частей разделить отрезок? Как обозначить целое и части?
2. Что и как можно найти по-разному?
3. Найдите значение выражений.
4.Что изменяли в выражениях. Сделайте вывод.
5.Для чего используют это свойство?
Данное выражение изобразить на отрезке, попробовать найти неизвестное по-разному, найти значение выражений, записать равенство, сделать вывод
Прокоментировать:
1.На сколько частей разделить отрезок? Как обозначить целое и части?
2. Что и как можно найти по-разному?
3. Найдите значение выражений.
4.Что изменяли в выражениях. Сделайте вывод.
5.Для чего используют это свойство?
Данное выражение изобразить на отрезке, попробовать найти неизвестное по-разному, найти значение выражений, записать равенство, сделать вывод
Прокоментировать:
1.На сколько частей разделить отрезок? Как обозначить целое и части?
2. Что и как можно найти по-разному?
3. Найдите значение выражений.
4.Что изменяли в выражениях. Сделайте вывод.
5.Для чего используют это свойство?
Данное выражение изобразить на отрезке, попробовать найти неизвестное по-разному, найти значение выражений, записать равенство, сделать вывод
Прокоментировать:
1.На сколько частей разделить отрезок? Как обозначить целое и части?
2. Что и как можно найти по-разному?
3. Найдите значение выражений.
4.Что изменяли в выражениях. Сделайте вывод.
5.Для чего используют это свойство?
5+ 75=
38+66+62=
5+ 75=
38+66+62=
5+ 75=
38+66+62=
5+ 75=
38+66+62=
5+ 75=
38+66+62=
5+ 75=
38+66+62=
5+ 75=
38+66+62=
5+ 75=
38+66+62=
5+ 75=
38+66+62=
5+ 75=
38+66+62=
5+ 75=
38+66+62=
5+ 75=
38+66+62=
5+ 75=
38+66+62=
5+ 75=
38+66+62=
5+ 75=
38+66+62=
5+ 75=
38+66+62=
5+ 75=
38+66+62=
5+ 75=
38+66+62=
5+ 75=
38+66+62=
5+ 75=
38+66+62=
5+ 75=
38+66+62=
5+ 75=
38+66+62=
5+ 75=
38+66+62= 5
13PAGE 15
13PAGE 14115
О
(5 + 95) – 7
Й
6 + (95 – 7)
В
5 + (95 –73)
А
7 – 7 + 16
С
9 + 16 – 7
Т
7 + 7 + 16
18
27
93
94
18
30
27
16
с
а
b
а + b = b + а
(5 + 95) – 7
7 – 7 + 16
7 + 7 + 16
(456 + 99) + 1 =
?
(+) + ..=.
. + ( + ..)= ..
?
(456 + 99) + 1= 556
456 + (99 + 1)= 556
1
99
456
О
(5 + 95) – 7
Й
6 + (95 – 7)
В
5 + (95 –73)
А
7 – 7 + 16
С
9 + 16 – 7
Т
7 + 7 + 16
18
27
93
94
18
30
27
16
О
(5 + 95) – 7
Й
6 + (95 – 7)
В
5 + (95 –73)
А
7 – 7 + 16
С
9 + 16 – 7
Т
7 + 7 + 16
18
27
93
94
18
30
27
16
О
(5 + 95) – 7
Й
6 + (95 – 7)
В
5 + (95 –73)
А
7 – 7 + 16
С
9 + 16 – 7
Т
7 + 7 + 16
18
27
93
94
18
30
27
16
О
(5 + 95) – 7
Й
6 + (95 – 7)
В
5 + (95 –73)
А
7 – 7 + 16
С
9 + 16 – 7
Т
7 + 7 + 16
18
27
93
94
18
30
27
16
О
(5 + 95) – 7
Й
6 + (95 – 7)
В
5 + (95 –73)
А
7 – 7 + 16
С
9 + 16 – 7
Т
7 + 7 + 16
18
27
93
94
18
30
27
16
О
(5 + 95) – 7
Й
6 + (95 – 7)
В
5 + (95 –73)
А
7 – 7 + 16
С
9 + 16 – 7
Т
7 + 7 + 16
18
27
93
94
18
30
27
16
О
(5 + 95) – 7
Й
6 + (95 – 7)
В
5 + (95 –73)
А
7 – 7 + 16
С
9 + 16 – 7
Т
7 + 7 + 16
18
27
93
94
18
30
27
16
О
(5 + 95) – 7
Й
6 + (95 – 7)
В
5 + (95 –73)
А
7 – 7 + 16
С
9 + 16 – 7
Т
7 + 7 + 16
18
27
93
94
18
30
27
16
О
(5 + 95) – 7
Й
6 + (95 – 7)
В
5 + (95 –73)
А
7 – 7 + 16
С
9 + 16 – 7
Т
7 + 7 + 16
18
27
93
94
18
30
27
16
О
(5 + 95) – 7
Й
6 + (95 – 7)
В
5 + (95 –73)
А
7 – 7 + 16
С
9 + 16 – 7
Т
7 + 7 + 16
18
27
93
94
18
30
27
16
Заголовок 715