РАБОЧАЯ ПРОГРАММА ПО МАТЕМАТИКЕ, ПД.01, ДЛЯ СТУДЕНТОВ 1 КУРСА СПЕЦИАЛЬНОСТИ 35.02.03 ТЕХНОЛОГИЯ ДЕРЕВООБРАБОТКИ
Департамент образования и науки
Кемеровской области
3,5
15
15
5
Государственное профессиональное
образовательное учреждение
«Мариинский политехнический техникум»
5
10
10
35.02.03 Технология деревообработки
ArialNarrow,
30 п, (Шрифт 7)
ArialNarrow,
20,5 п, (Шрифт 5)
3
10
ПД. 01. МАТЕМАТИКА
Рабочая программа учебной дисциплины
7
10
ArialNarrow,
30 п, (Шрифт 7)
10
20
15
10
30
ArialNarrow,
20,5 п, (Шрифт 5)
2016
Рассмотрено на заседании Утверждено на заседании
предметной (цикловой) комиссии
методического совета
_____________________________ ГПОУ МПТ
_____________________________ _____________________________
(подпись председателя ПЦК) (подпись председателя методического совета)
Протокол № _____ Протокол № _____
От «____» ____________ 201__ г. От «____» ____________ 201 __ г.
Протокол № _____ Протокол № _____
От «____» ____________ 201 __ г. От «____» ____________ 201 __ г.
Протокол № _____ Протокол № _____
От «____» ____________ 201 __ г. От «____» ____________ 201 __ г.
Рабочая программа учебной дисциплины «Математика» разработана на основе Федерального компонента государственного стандарта (приказ от 05.03.2004 № 1089 «Об утверждении Федерального компонента государственных образовательных стандартов начального общего, основного общего и среднего (полного) общего образования») с последующими дополнениями и изменениями (приказ Минобрнауки России от 10.11.2011 г. № 2643) для специальности 35.02.03 Технология деревообработки
Организация разработчик: государственное профессиональное образовательное учреждение «Мариинский политехнический техникум»
Разработчики:
З.И. Подберезина, преподаватель ГПОУ МПТ
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
Программа учебной дисциплины «Математика» предназначена для изучения математики в профессиональных образовательных учреждениях, реализующих образовательную программу среднего (полного) общего образования, предназначена для реализации государственных требований к минимуму содержания и уровню подготовки выпускников по специальностям 35.02.03 Технология деревообработки.
Рабочая программа учебной дисциплины «Математика» разработана на основе Федерального компонента государственного стандарта (приказ от 05.03.2004 № 1089 «Об утверждении Федерального компонента государственных образовательных стандартов начального общего, основного общего и среднего (полного) общего образования») с последующими дополнениями и изменениями (приказ Минобрнауки России от 10.11.2011 г. № 2643).Математика изучается как профильная учебная дисциплина при освоении специальностей 35.02.03 Технология деревообработки в объеме 429 часов.
Изучение математики на профильном уровне среднего (полного) общего образования направлено на достижение следующих целей:
формирование представлений об идеях и методах математики; о математике как универсальном языке науки, средстве моделирования явлений и процессов;
овладение языком математики в устной и письменной форме, математическими знаниями и умениями, необходимыми для изучения школьных естественнонаучных дисциплин, продолжения образования и освоения избранной специальности на современном уровне;
развитие логического мышления, алгоритмической культуры, пространственного воображения, математического мышления и интуиции, творческих способностей, необходимых для продолжения образования и для самостоятельной деятельности в области математики и ее приложений в будущей профессиональной деятельности;
воспитание средствами математики культуры личности через знакомство с историей развития математики, эволюцией математических идей; понимания значимости математики для научно-технического прогресса.
В программе учебный материал представлен в форме чередующегося развертывания основных содержательных линий:
алгебраическая линия, включающая систематизацию сведений о числах; изучение новых и обобщение ранее изученных операций (возведение в степень, извлечение корня, логарифмирование, синус, косинус, тангенс, котангенс и обратные к ним); изучение новых видов числовых выражений и формул; совершенствование практических навыков и вычислительной культуры, расширение и совершенствование алгебраического аппарата, сформированного в основной школе, и его применение к решению математических и прикладных задач;теоретико-функциональная линия, включающая систематизацию и расширение сведений о функциях, совершенствование графических умений; знакомство с основными идеями и методами математического анализа в объеме, позволяющем исследовать элементарные функции и решать простейшие геометрические, физические и другие прикладные задачи;
линия уравнений и неравенств, основанная на построении и исследовании математических моделей, пересекающаяся с алгебраической и теоретико-функциональной линиями и включающая развитие и совершенствование техники алгебраических преобразований для решения уравнений, неравенств и систем; формирование способности строить и исследовать простейшие математические модели при решении прикладных задач, задач из смежных и специальных дисциплин;геометрическая линия, включающая наглядные представления о пространственных фигурах и изучение их свойств, формирование и развитие пространственного воображения, развитие способов геометрических измерений, координатного и векторного методов для решения математических и прикладных задач;
стохастическая линия, основанная на развитии комбинаторных умений, представлений о вероятностно-статистических закономерностях окружающего мира.
Изучение математики как профильной учебной дисциплины обеспечивается:
–выбором различных подходов к введению основных понятий;
–формированием системы учебных заданий, обеспечивающих эффективное осуществление выбранных целевых установок;
–обогащением спектра стилей учебной деятельности за счет согласования с ведущими деятельностными характеристиками выбранной профессии.
Профильная составляющая отражается в требованиях к подготовке обучающихся в части:
–общей системы знаний: содержательные примеры использования математических идей и методов в профессиональной деятельности;
–умений: различие в уровне требований к сложности применяемых алгоритмов;
–практического использования приобретенных знаний и умений: индивидуального учебного опыта в построении математических моделей, выполнении исследовательских и проектных работ.
В программе курсивом выделен материал, который при изучении математики контролю не подлежит.
Промежуточная аттестация для студентов первого курса проводится в форме экзаменов за 1 и 2 семестр, для студентов второго курса – свободная форма.
СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ
ЧИСЛОВЫЕ И БУКВЕННЫЕ ВЫРАЖЕНИЯ
Делимость целых чисел. Деление с остатком. Сравнения. Решение задач с целочисленными неизвестными.
Комплексные числа. Геометрическая интерпретация комплексных чисел. Действительная и мнимая часть, модуль и аргумент комплексного числа. Алгебраическая и тригонометрическая формы записи комплексных чисел. Арифметические действия над комплексными числами в разных формах записи. Комплексно сопряженные числа. Возведение в натуральную степень (формула Муавра). Основная теорема алгебры.
Многочлены от одной переменной. Делимость многочленов. Деление многочленов с остатком. Рациональные корни многочленов с целыми коэффициентами. Схема Горнера. Теорема Безу. Число корней многочлена. Многочлены от двух переменных. Формулы сокращенного умножения для старших степеней. Бином Ньютона. Многочлены от нескольких переменных, симметрические многочлены.
Корень степени n>1 и его свойства. Степень с рациональным показателем и ее свойства. Понятие о степени с действительным показателем. Свойства степени с действительным показателем.
Логарифм числа. Основное логарифмическое тождество. Логарифм произведения, частного, степени; переход к новому основанию. Десятичный и натуральный логарифмы, число е.
Преобразования выражений, включающих арифметические операции, а также операции возведения в степень и логарифмирования.
Тригонометрия
Синус, косинус, тангенс, котангенс произвольного угла. Радианная мера угла. Синус, косинус, тангенс и котангенс числа. Основные тригонометрические тождества. Формулы приведения. Синус, косинус и тангенс суммы и разности двух углов. Синус и косинус двойного угла. Формулы половинного угла. Преобразования суммы тригонометрических функций в произведение и произведения в сумму. Выражение тригонометрических функций через тангенс половинного аргумента. Преобразования тригонометрических выражений.
Простейшие тригонометрические уравнения. Решения тригонометрических уравнений. Простейшие тригонометрические неравенства.
Арксинус, арккосинус, арктангенс, арккотангенс числа.
ФУНКЦИИ
Функции. Область определения и множество значений. График функции. Построение графиков функций, заданных различными способами. Свойства функций: монотонность, четность и нечетность, периодичность, ограниченность. Промежутки возрастания и убывания, наибольшее и наименьшее значения, точки экстремума (локального максимума и минимума). Выпуклость функции. Графическая интерпретация. Примеры функциональных зависимостей в реальных процессах и явлениях.
Сложная функция (композиция функций). Взаимно обратные функции. Область определения и область значений обратной функции. График обратной функции. Нахождение функции, обратной данной.
Степенная функция с натуральным показателем, ее свойства и график. Вертикальные и горизонтальные асимптоты графиков. Графики дробно-линейных функций.
Тригонометрические функции, их свойства и графики, периодичность, основной период. Обратные тригонометрические функции, их свойства и графики.
Показательная функция (экспонента), ее свойства и график.
Логарифмическая функция, ее свойства и график.
Преобразования графиков: параллельный перенос, симметрия относительно осей координат и симметрия относительно начала координат, симметрия относительно прямой y = x, растяжение и сжатие вдоль осей координат.
НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА
Понятие о пределе последовательности.Существование предела монотонной ограниченной последовательности. Длина окружности и площадь круга как пределы последовательностей. Бесконечно убывающая геометрическая прогрессия и ее сумма. Теоремы о пределах последовательностей. Переход к пределам в неравенствах.
Понятие о непрерывности функции. Основные теоремы о непрерывных функциях.
Понятие о пределе функции в точке. Поведение функций на бесконечности. Асимптоты.
Понятие о производной функции, физический и геометрический смысл производной.Уравнение касательной к графику функции. Производные суммы, разности, произведения и частного. Производные основных элементарных функций. Производные сложной и обратной функций. Вторая производная. Применение производной к исследованию функций и построению графиков. Использование производных при решении уравнений и неравенств, текстовых, физических и геометрических задач, нахождении наибольших и наименьших значений.
Площадь криволинейной трапеции. Понятие об определенном интеграле. Первообразная. Первообразные элементарных функций. Правила вычисления первообразных. Формула Ньютона-Лейбница.
Примеры использования производной для нахождения наилучшего решения в прикладных задачах. Нахождение скорости для процесса, заданного формулой или графиком. Примеры применения интеграла в физике и геометрии.Вторая производная и ее физический смысл.
УРАВНЕНИЯ И НЕРАВЕНСТВА
Решение рациональных, показательных, логарифмических и тригонометрических уравнений и неравенств. Решение иррациональных уравнений инеравенств.
Основные приемы решения систем уравнений: подстановка, алгебраическое сложение, введение новых переменных. Равносильность уравнений, неравенств, систем. Решение систем уравнений с двумя неизвестными (простейшие типы). Решение систем неравенств с одной переменной.
Доказательства неравенств. Неравенство о среднем арифметическом и среднем геометрическом двух чисел.
Использование свойств и графиков функций при решении уравнений и неравенств. Метод интервалов. Изображение на координатной плоскости множества решений уравнений и неравенств с двумя переменными и их систем.
Применение математических методов для решения содержательных задач из различных областей науки и практики. Интерпретация результата, учет реальных ограничений.
ЭЛЕМЕНТЫ КОМБИНАТОРИКИ, СТАТИСТИКИ И ТЕОРИИ ВЕРОЯТНОСТЕЙ
Табличное и графическое представление данных. Числовые характеристики рядов данных.
Поочередный и одновременный выбор нескольких элементов из конечного множества. Формулы числа перестановок, сочетаний, размещений. Решение комбинаторных задач. Формула бинома Ньютона. Свойства биномиальных коэффициентов. Треугольник Паскаля.
Элементарные и сложные события. Рассмотрение случаев и вероятность суммы несовместных событий, вероятность противоположного события. Понятие о независимости событий. Вероятность и статистическая частота наступления события.
ГЕОМЕТРИЯ
Геометрия на плоскости
Свойство биссектрисы угла треугольника. Решение треугольников. Вычисление биссектрис, медиан, высот, радиусов вписанной и описанной окружностей. Формулы площади треугольника: формула Герона, выражение площади треугольника через радиус вписанной и описанной окружностей.
Вычисление углов с вершиной внутри и вне круга, угла между хордой и касательной.
Теорема о произведении отрезков хорд. Теорема о касательной и секущей. Теорема о сумме квадратов сторон и диагоналей параллелограмма
Вписанные и описанные многоугольники. Свойства и признаки вписанных и описанных четырехугольников.
Геометрические места точек.
Решение задач с помощью геометрических преобразований и геометрических мест.
Теорема Чевы и теорема Менелая.
Эллипс, гипербола, парабола как геометрические места точек.
Неразрешимость классических задач на построение.
Прямые и плоскости в пространстве.
Основные понятия стереометрии (точка, прямая, плоскость, пространство). Понятие об аксиоматическом способе построения геометрии.
Пересекающиеся, параллельные и скрещивающиеся прямые. Угол между прямыми в пространстве. Перпендикулярность прямых.Параллельность и перпендикулярность прямой и плоскости, признаки и свойства. Теорема о трех перпендикулярах. Перпендикуляр и наклонная к плоскости. Угол между прямой и плоскостью.
Параллельность плоскостей, перпендикулярность плоскостей, признаки и свойства. Двугранный угол, линейный угол двугранного угла.
Расстояния от точки до плоскости. Расстояние от прямой до плоскости. Расстояние между параллельными плоскостями. Расстояние между скрещивающимися прямыми.
Параллельное проектирование. Ортогональное проектирование. Площадь ортогональной проекции многоугольника. Изображение пространственных фигур. Центральное проектирование.
Многогранники.
Вершины, ребра, грани многогранника. Развертка. Многогранные углы. Выпуклые многогранники.Теорема Эйлера.
Призма, ее основания, боковые ребра, высота, боковая поверхность. Прямая и наклонная призма. Правильная призма. Параллелепипед. Куб.
Пирамида, ее основание, боковые ребра, высота, боковая поверхность. Треугольная пирамида. Правильная пирамида. Усеченная пирамида.
Симметрии в кубе, в параллелепипеде, в призме и пирамиде.
Понятие о симметрии в пространстве (центральная, осевая, зеркальная).
Сечения многогранников. Построение сечений.
Представление о правильных многогранниках (тетраэдр, куб, октаэдр, додекаэдр и икосаэдр).
Тела и поверхности вращения.
Цилиндр и конус. Усеченный конус. Основание, высота, боковая поверхность, образующая, развертка. Осевые сечения и сечения параллельные основанию.
Шар и сфера, их сечения. Эллипс, гипербола, парабола как сечения конуса. Касательная плоскость к сфере. Сфера, вписанная в многогранник, сфера, описанная около многогранника.
Цилиндрические и конические поверхности.
Объемы тел и площади их поверхностей.
Понятие об объеме тела.Отношение объемов подобных тел.
Формулы объема куба, параллелепипеда, призмы, цилиндра. Формулы объема пирамиды и конуса. Формулы площади поверхностей цилиндра и конуса. Формулы объема шара и площади сферы.
Координаты и векторы.
Декартовы координаты в пространстве. Формула расстояния между двумя точками. Уравнения сферы и плоскости. Формула расстояния от точки до плоскости.
Векторы. Модуль вектора. Равенство векторов. Сложение векторов и умножение вектора на число. Угол между векторами. Координаты вектора. Скалярное произведение векторов. Коллинеарные векторы. Разложение вектора по двум неколлинеарным векторам. Компланарные векторы. Разложение по трем некомпланарным векторам.
Тематический план
№
п/п Наименование тем Содержа-тельные линии Количество часов Внеауди-торнаясамостоя-тельная работа
Макси-мальнаянагруз-каВсего часов Из них ауди-торных (теоре-тических)Из них прак-тичес-ких1 2 3 4 5 6 7 8
1 Введение. 2 2 2 2 Раздел 1.
Числовые и буквенные выражения Алгебраическая57 38 30 8 19
3 Раздел 2. Тригонометрия Алгебраи-
ческая, теоретико-функциональная, уравнений и неравенства42 28 22 6 14
4 Раздел 3. Функции.
Теоретико-функциональная48 32 28 4 16
5 Раздел 4. Начала математического анализа Теоретико-функциональная72 50 40 10 25
6 Раздел 5.
Уравнения и неравенства Уравнения и неравенства51 34 30 4 17
7 Раздел 6.
Элементы комбинаторики, статистики и теории вероятностей Стохастическая33 22 16 6 11
8 Раздел 7.
Геометрия на плоскости Геометрическая24 16 14 2 8
9 Раздел 8.
Геометрия в пространстве Геометрическая100 68 58 10 34
Итого 429 290 240 50 145
ТРЕБОВАНИЯ К УРОВНЮПОДГОТОВКИ ВЫПУСКНИКОВ
В результате изучения математики на профильном уровне ученик должен
знать/понимать
значение математической науки для решения задач, возникающих в теории и практике; широту и ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
значение практики и вопросов, возникающих в самой математике, для формирования и развития математической науки;
идеи расширения числовых множеств как способа построения нового математического аппарата для решения практических задач и внутренних задач математики;
значение идей, методов и результатов алгебры и математического анализа для построения моделей реальных процессов и ситуаций;
возможности геометрии для описания свойств реальных предметов и их взаимного расположения;
универсальный характер законов логики математических рассуждений, их применимость в различных областях человеческой деятельности;
различие требований, предъявляемых к доказательствам в математике, естественных, социально-экономических и гуманитарных науках, на практике;
роль аксиоматики в математике; возможность построения математических теорий на аксиоматической основе; значение аксиоматики для других областей знания и для практики;
вероятностных характер различных процессов и закономерностей окружающего мира;
Числовые и буквенные выражения
уметь
выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;
применять понятия, связанные с делимостью целых чисел, при решении математических задач;
находить корни многочленов с одной переменной, раскладывать многочлены на множители;
выполнять действия с комплексными числами, пользоваться геометрической интерпретацией комплексных чисел, в простейших случаях находить комплексные корни уравнений с действительными коэффициентами;
проводить преобразования числовых и буквенных выражений, включающих степени, радикалы, логарифмы и тригонометрические функции;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, используя при необходимости справочные материалы и простейшие вычислительные устройства;
приобретения практического опыта деятельности, предшествующей профессиональной, в основе которой лежит данный учебный предмет.
Функции и графики
уметь
определять значение функции по значению аргумента при различных способах задания функции;
строить графики изученных функций, выполнять преобразования графиков;
описывать по графику и по формуле поведение и свойства функций;
решать уравнения, системы уравнений, неравенства, используя свойства функций и их графические представления;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
описания и исследования с помощью функций реальных зависимостей, представления их графически; интерпретации графиков реальных процессов;
приобретения практического опыта деятельности, предшествующей профессиональной, в основе которой лежит данный учебный предмет.
Начала математического анализа
уметь
находить сумму бесконечно убывающей геометрической прогрессии;
вычислять производные и первообразные элементарных функций, применяя правила вычисления производных и первообразных, используя справочные материалы;
исследовать функции и строить их графики с помощью производной;
решать задачи с применением уравнения касательной к графику функции;
решать задачи на нахождение наибольшего и наименьшего значения функции на отрезке;
вычислять площадь криволинейной трапеции;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
решения геометрических, физических, экономических и других прикладных задач, в том числе задач на наибольшие и наименьшие значения с применением аппарата математического анализа;
приобретения практического опыта деятельности, предшествующей профессиональной, в основе которой лежит данный учебный предмет.
Уравнения и неравенства
уметь
решать рациональные, показательные и логарифмические уравнения и неравенства, иррациональные и тригонометрические уравнения, их системы;
доказывать несложные неравенства;
решать текстовые задачи с помощью составления уравнений, и неравенств, интерпретируя результат с учетом ограничений условия задачи;
изображать на координатной плоскости множества решений уравнений и неравенств с двумя переменными и их систем.
находить приближенные решения уравнений и их систем, используя графический метод;
решать уравнения, неравенства и системы с применением графических представлений, свойств функций, производной;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
построения и исследования простейших математических моделей;
приобретения практического опыта деятельности, предшествующей профессиональной, в основе которой лежит данный учебный предмет.
Элементы комбинаторики, статистики и теории вероятностей
уметь
решать простейшие комбинаторные задачи методом перебора, а также с использованием известных формул, треугольника Паскаля; вычислять коэффициенты бинома Ньютона по формуле и с использованием треугольника Паскаля;
вычислять вероятности событий на основе подсчета числа исходов (простейшие случаи);
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
анализа реальных числовых данных, представленных в виде диаграмм, графиков; для анализа информации статистического характера;
приобретения практического опыта деятельности, предшествующей профессиональной, в основе которой лежит данный учебный предмет.
Геометрия
уметь
соотносить плоские геометрические фигуры и трехмерные объекты с их описаниями, чертежами, изображениями; различать и анализировать взаимное расположение фигур;
изображать геометрические фигуры и тела, выполнять чертеж по условию задачи;
решать геометрические задачи, опираясь на изученные свойства планиметрических и стереометрических фигур и отношений между ними, применяя алгебраический и тригонометрический аппарат;
проводить доказательные рассуждения при решении задач, доказывать основные теоремы курса;
вычислять линейные элементы и углы в пространственных конфигурациях, объемы и площади поверхностей пространственных тел и их простейших комбинаций;
применять координатно-векторный метод для вычисления отношений, расстояний и углов;
строить сечения многогранников и изображать сечения тел вращения;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур;
вычисления длин, площадей и объемов реальных объектов при решении практических задач, используя при необходимости справочники и вычислительные устройства;
приобретения практического опыта деятельности, предшествующей профессиональной, в основе которой лежит данный учебный предмет.
ЛИТЕРАТУРА
1. Башмаков, М. И. Математика: Учебник для НПО и СПО [Текст]/ М. И. Башмаков. – М.: Академия, 2013 – 256 с.
2.Богомолов, И. В. Математика: учебник для ссузов[Текст] / И.В. Богомолов, П.И. Самойленко. – 12-е изд., стереотип. – М.: Дрофа, 2013. – 395 с.: ил.
3.Богомолов, И. В. Сборник задач по математике: учеб.пособие для ссузов[Текст] / Н. В. Богомолов. – 12-е изд., стереотип. – М.: Дрофа, 2013. – 204 с., ил.
4.Мордкович, А. М. Алгебра и начала анализа. 10-11 кл.: Учеб.для общеобразоват. учреждений [Текст] / А. М. Мордкович. – М.: Мнемозина, 2012. – 336 с.
5.Мордкович, А. М. Алгебра и начала анализа. 10-11 кл.: Задачник для общеобразоват. учреждений [Текст] / А. М. Мордкович. – М.: Мнемозина, 2012. – 315 с.
6.Алимов, Ш. А. Алгебра и начала анализа: Учеб.для 10 – 11 кл. общеобразоват. учреждений [Текст] / Ш. А. Алимов, Ю. М. Колягин и др. – 12-е изд. – М.: Просвещение, 2012. – 384 с.
7.Дадаян, А.А. Математика: Учебник [Текст] / А.А.Дадаян. – 3-е изд.- М.: Форум: НИЦ ИНФРА – М, 2013. – 544 с.
8. Филимонова, Е. В. Математика и информатика: Учебник [Текст] / Е. В. Филимонова. – 3-е изд. – М.: Издательство – торговая корпорация «Дашков и К», 2012. – 480 с.
9.Никольский, С. М. Математика: Школьная энциклопедия [Текст] / Гл. ред. С. М. Никольский. – М.: Большая Российская энциклопедия; Дрофа, 2012. – 527 с., ил.
10.Глейзер, Г. И. История математики в школе: 9-10 кл. [Текст] / Г. И. Глейзер. Пособие для учителей. – М.: Просвещение, 2012. – 351 с.: ил.
11. Соловейчик, И.Л.,Лисичкин, В.Т. Математика в задачах с решениями[Текст]/ Л.И. Соловейчик, В.Т. Лисичкин. Санкт-Петербург; Москва; Краснодар, 2012г. – 334 с.
Интернет-ресурсы
1.Общероссийский математический портал [Электронный ресурс]: математический институт имени В.А. Стеклова РАН - Режим доступа: www.mathnet.ru, свободный.- Загл. с экрана.
2.«Квант» [Электронный ресурс]: Научно-популярный физико-математический журнал для школьников и студентов - Режим доступа: http://www.kvant.info/links_m.htm свободный,- Загл. с экрана.
3.«Мир математических уравнений» [Электронный ресурс]:Международный научно-образовательный сайт EqWorld - Режим доступа: http://eqworld.ipmnet.ru/indexr.htm, свободный.-Загл. с экрана.