Пояснительная записка к ктп по математике,3 класс, ФГОС, Школа России, 3 класс + КИМ
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА ПРОГРАММЫ МАТЕМАТИКА
Авторы: М. И. Моро, Ю. М. Колягин, М. А. Бантов, и др.
Развернутое тематическое планирование по математике (3 класс) составлено на основе требований Федерального компонента государственного стандарта общего образования 2004 года и разработано по учебнику: Моро М.И. и др. Математика. 3 класс.- М: Просвещение, 2013г.
Тематическое планирование рассчитано на 4 учебных часа в неделю, что составляет 136 учебных часов в год.
1 четверть – 36 часов
2 четверть – 28 часов
3 четверть – 40 часов
4 четверть – 32 часа
Количество контрольных работ – 12 часов.
Цели и задачи, решаемые при реализации тематического планирования:
развивать образного и логического мышления, воображения;
формирование предметных умений и навыков, необходимых для успешного решения учебных и практических задач, продолжения образования;
освоение основ математических знаний, формирование первоначальных представленных представлений о математике;
воспитание интереса к математике, стремления использовать математические знания в повседневной жизни.
Планируемый уровень подготовки учащихся начальных классов:
младший школьник получит представление о натуральном числе и нуле, о нумерации чисел в десятичной системе счисления;
научится выполнять устно и письменно арифметические действия с числами;
научится находить неизвестный компонент арифметического действия;
усвоит смысл отношений «больше (меньше) на », «больше (меньше) в раз», правила порядка выполнения действий в числовых выражениях;
получит представление о величинах, геометрических фигурах;
научится решать несложные текстовые задачи
Начальный курс математики - курс интегрированный: в нем объединены арифметический, алгебраический и геометрический материалы. При этом основу начального курса составляют представления о натуральном числе и нуле, о четырех арифметических действиях с целыми неотрицательными числами и важнейших их свойствах, а также основанное на этих знаниях осознанное и прочное усвоение приемов устных и письменных вычислений.
Наряду с этим важное место в курсе занимает ознакомление с величинами и их измерением.
Курс предполагает также формирование у детей пространственных представлений, ознакомление учащихся с различными геометрическими фигурами и некоторыми их свойствами, с простейшими чертежными и измерительными приборами.
Включение в программу элементов алгебраической пропедевтики позволяет повысить уровень формируемых обобщений, способствует развитию абстрактного мышления у учащихся.
Изучение начального курса математики должно создать прочную основу для дальнейшего обучения этому предмету. Для этого важно не только вооружить учащихся предусмотренным программой кругом знаний, умений и навыков, но и обеспечить необходимый уровень их общего и математического развития. Последнее может быть достигнуто лишь при условии реализации в практике соответствующей целенаправленной методики.
Уделяя значительное внимание формированию у учащихся осознанных и прочных, во многих случаях доведенных до автоматизма навыков вычислений, программа предполагает вместе с тем и доступное детям обобщение учебного материала, понимание общих принципов и законов, лежащих в основе изучаемых математических фактов, осознание тех связей, которые существуют между рассматриваемыми явлениями. Этим целям отвечает не только содержание, но и система расположения материала в курсе.
Программа предусматривает раскрытие взаимосвязи между компонентами и результатами действий. Важнейшее значение придается постоянному использованию сопоставления, сравнения, противопоставления связанных между собой понятий, действий и задач, выяснению сходства и различия в рассматриваемых фактах. С этой целью материал сгруппирован так, что изучение связанных между собой понятий, действий, задач сближено во времени.
Концентрическое построение курса, связанное с последовательным расширением области чисел, позволяет соблюсти необходимую постепенность в нарастании трудности учебного материала и создает хорошие условия для совершенствования формируемых знаний, умений и навыков.
Ведущие принципы обучения математике в младших классах - учет возрастных особенностей учащихся, органическое сочетание обучения и воспитания, усвоение знаний и развитие познавательных способностей детей, практическая направленность преподавания, выработка необходимых для этого навыков.
ОСНОВНЫЕ ВОПРОСЫ КУРСА
Формирование понятий о натуральном числе и арифметических действиях начинается с первых уроков и проводится на основе практических действий с различными группами предметов. Такой подход дает возможность использовать ранее накопленный детьми опыт, их первоначальные знания о числе и счете. Это позволяет с самого начала вести обучение в тесной связи с жизнью. Приобретаемые знания дети могут использовать при решении разнообразных задач, возникающих в их игровой и учебной деятельности, а также в быту.
Вместе с тем с самого начала обучения у детей формируются некоторые важные обобщения. Так, на примере чисел первого десятка выясняется, как образуется каждое следующее число в натуральном ряду, устанавливается соотношение между любым числом ряда и всеми предшествующими или последующими числами, учащиеся знакомятся с различными способами сравнения чисел (сначала на основе сравнения соответствующих групп предметов, а затем по месту, которое занимают сравниваемые числа в ряду).
При изучении сложения и вычитания в пределах 10 дети знакомятся с названиями действий, их компонентов и результатов, терминами равенство, неравенство. При этом имеется в виду, что математические термины должны усваиваться детьми естественно, как усваиваются ими любые новые для них слова, если они часто употребляются окружающими и находят применение в практике.
В дальнейшем, во II классе, вводятся термины «выражение», «значение выражения».
Помимо терминологии, дети усваивают и некоторые элементы математической символики: знаки действий (плюс, минус), знаки отношений (больше, меньше, равно); они учатся читать и записывать простейшие математические выражения вида 5 + 4, 7 - 2, а также более сложные выражения вида 6+(6-2).
Вместо привычного «Решение примеров» в речи учителя и учащихся звучит: «Найдем значение выражения», «Сравним выражения» и т. п.
В программе предусмотрено ознакомление с некоторыми свойствами арифметических действий и основанными на них приемами вычислений. Так, в теме «Числа от 1 до 10» дети знакомятся с переместительным свойством сложения, учатся пользоваться приемом перестановки слагаемых в тех случаях, когда его применение облегчает вычисления (например, в случаях вида 2+ 7, 1 +6 и т. п.). На основе практических действий с предметами учащиеся знакомятся с тем, что прибавить или вычесть число можно по частям (например, 6+3=6+2+ 1, 6-3=6-2-1). Таким образом, учащиеся практически знакомятся с сочетательным свойством сложения, которое во 11 классе будет специально рассмотрено и сформулировано. Ознакомление со связью между сложением и вычитанием дает возможность находить разность, опираясь на знание состава чисел и соответствующих случаев сложения.
Для формирования навыков быстрого вычисления важно обеспечить своевременный переход от развернутого объяснения решения ко все более лаконичным устным пояснениям, а затем к выполнению действий без пояснений.
Центральной задачей при изучении раздела «Числа от 1 до 20» является изучение табличного сложения и вычитания. Внетабличное сложение и вычитание, умножение однозначных чисел и соответствующие случаи деления рассматриваются в теме «Числа от 1 до 100», которая изучается на втором и третьем годах обучения.
Чтобы обеспечить прочное, доведенное до автоматизма усвоение таблиц сложения и умножения, важно не только своевременно создать у детей установку на их запоминание, но и организовать повседневную тренировочную работу, а также систематический контроль над усвоением таблиц каждым учеником.
Перед изучением внетабличного умножения и деления дети знакомятся с разными способами умножения или деления суммы на число (в случае, когда каждое слагаемое делится на это число). Изученные свойства действий используются также для рационализации вычислений, когда речь идет о нахождении значений выражений, содержащих несколько действий.
Наряду с устными приемами в программе уделяется большое внимание обучению детей письменным вычислениям. Эта работа начинается уже в теме «Сотня». Впервые программа предусматривает ознакомление учащихся с записью сложения и вычитания столбиком во II классе при рассмотрении более сложных случаев сложения и вычитания в пределах 100. На третьем и четвертом годах обучения в теме «Числа от 1 до 1000» дети знакомятся также с письменными приемами умножения и деления на однозначное число.
В теме «Числа, которые больше 1000» предусматривается изучение нумерации и четырех арифметических действий над многозначными числами.
Сейчас, когда дети постоянно слышат не только о миллионах, но и миллиардах, уже нельзя ограничивать их рассмотрением чисел в пределах миллиона. Поэтому предусмотрено ознакомление с классами не только тысяч, но и миллионов, миллиардов. Это дает возможность сформировать и закрепить представления детей о том, как образуются классы чисел, научить их читать, записывать, сравнивать такие числа. Однако выполнение арифметических действий ограничено пределами миллиона. При ознакомлении с письменными приемами выполнения арифметических действий важное значение придается алгоритмизации. Все объяснения даются в виде четко сформулированной последовательности шагов, которые должны быть выполнены. При рассмотрении каждого алгоритма сложения, вычитания, умножения или деления четко выделены основные этапы, план рассуждений, подлежащие усвоению каждым учеником. Это поможет правильно организовать процесс формирования вычислительных умений. В этом процессе должен осуществляться своевременный переход от подробного объяснения каждого шага рассуждений к постепенному свертыванию объяснений, когда выделяются только основные элементы алгоритма. Например: «Делю тысячи, получаю ... », «Делю сотни, получаю ... », «Делю десятки, получаю ... » и т. д.
После того как алгоритм усвоен, требование проговаривать каждый шаг может искусственно замедлить выполнение вычислений, и оправдано только при исправлении допущенных учеником ошибок.
Особого внимания заслуживает рассмотрение правил о порядке выполнения арифметических действий. Эти правила вводятся постепенно, начиная с первого класса, когда дети уже имеют дело с выражениями, содержащими только сложение и вычитание. Здесь они усваивают, что действия выполняются в том порядке, как они записаны: слева направо. Во 11 классе вводятся скобки как знаки, указывающие на изменение порядка выполнения действий. Правила о порядке выполнения действий усложняются при ознакомлении с умножением и делением в теме «Числа от 1 до 100». В дальнейшем, на последнем году обучения в начальной школе, рассматриваются новые для учащихся правила о порядке выполнения действий в выражениях, содержащих две пары скобок или два действия внутри скобок. Эти правила иллюстрируются довольно сложными при мерами, содержащими сначала 2-3, а затем 3-4 арифметических действия. Следует подчеркнуть, что правила о порядке выполнения действий - один из сложных и ответственных вопросов курса. Работа над ним требует многочисленных, распределенных во времени тренировочных упражнений. Умение применять эти правила в практике вычислений вынесено в основные требования программы на конец обучения в начальной школе.
Уверенное овладение детьми навыками устных и письменных вычислений является одной из основных задач начального обучения математике, так как это необходимо для продолжения обучения и позволяет решать любую вычислительную задачу без использования специальных средств. Вместе с тем, поскольку в настоящее время получили довольно большое распространение микрокалькуляторы, можно к концу обучения в начальной школе ознакомить учащихся с их использованием для проведения вычислений и проверки их правильности. С учетом реальных условий работы с классом - при наличии микрокалькуляторов у всех учащихся - можно выполнять на уроках специальные упражнения, направленные на формирование навыков работы с микрокалькулятором. Однако такая работа не должна идти в ущерб выполнению основных требований программы.
Важнейшей особенностью начального курса математики является то, что рассматриваемые в нем основные понятия, отношения, взаимосвязи, закономерности раскрываются на системе соответствующих конкретных задач. Например, решение так называемых простых текстовых задач (задач, решаемых одним действием) способствует более осознанному усвоению детьми смысла самих действий, отношений больше - меньше (на несколько единиц и в несколько раз), столько же (или равно), взаимосвязи между компонентами и результатами действий, использованию действий вычитания (деления) для сравнения чисел.
Именно на простых текстовых задачах дети знакомятся и со связью между такими величинами, как цена – количество – стоимость; норма расхода материала на 1 вещь - число изготовленных вещей и общий расход материала; скорость - время пройденный путь при равномерном движении; длина сторон прямоугольника и его площадь и др.
Такие задачи предусмотрены программой каждого года обучения. Система в их подборе и расположении во времени построена с таким расчетом, чтобы обеспечить наиболее благоприятные условия для сопоставления, сравнения, противопоставления задач, сходных в том или ином отношении, а также задач взаимообратных. Это исключает возможность выработки штампов и натаскивания в решении задач: дети с самого начала будут поставлены перед необходимостью каждый раз проводить анализ задачи, устанавливая связь между данными и искомым, прежде чем выбрать то или иное действие для ее решения.
К общим умениям работы над задачей относится и умение моделировать описанные в ней взаимосвязи между данными и искомым с использованием разного вида схематических и условных изображений, краткой записи задачи.
Наряду с простыми задачами уже в 1 классе вводятся и задачи составные. Это на первых порах задачи небольшой сложности (например, в 2 действия), направленные главным образом на разъяснение рассматриваемых свойств действий, на сопоставление различных случаев применения одного и того же действия, противопоставление случаев, требующих применения различных действий. В дальнейшем сложность рассматриваемых задач постепенно возрастает. Это могут быть и задачи, решаемые в 34 действия. Однако главным в усложнении задач является не столько увеличение числа действий, которыми они решаются, сколько относительная сложность «распутывания» того клубка связей, которые существуют между данными и искомым.
При обучении математике важно научить детей самостоятельно находить пути решения предлагаемых программой задач, применять простейшие общие подходы к их решению.
Дети учатся анализировать содержание задач, объясняя, что известно и что неизвестно в задаче, что можно узнать по данному условию и что нужно знать для ответа на вопрос задачи, какие арифметические действия и в какой последовательности должны быть выполнены для получения ответа на вопрос задачи, обосновывать выбор каждого действия и пояснять полученные результаты, записывать решение задачи на первых порах только по действиям, а в дальнейшем и составлять по условию задачи выражение, вычислять его значение, устно давать полный ответ на вопрос задачи и проверять правильность ее решения. Важно, чтобы учащиеся подмечали возможность различных способов решения некоторых задач и сознательно выбирали наиболее рациональный из них.
В процессе работы над задачами дети упражняются в самостоятельном составлении задач по различным заданиям учителя. Числовой и сюжетный материал для этого берется как из учебника, так и из окружающей действительности.
Работе над задачей можно придать творческий характер, если изменить вопрос задачи или ее условие при сохранении вопроса, поставить дополнительный вопрос или снять его, предложив учащимся самим определить, что можно узнать из условия задачи.
Серьезнейшее значение, которое придается обучению решению текстовых задач, объясняется еще и тем, что это мощный инструмент для развития у детей воображения, логического мышления, речи. Решение задач укрепляет связь обучения с жизнью, пробуждает у учащихся интерес к математическим знаниям и понимание их практического значения. Решение текстовых задач при соответствующем их подборе позволяет расширять кругозор ребенка, знакомя его с самыми разными сторонами окружающей действительности.
Важным понятием курса является понятие величины. При формировании представлений о величинах (длине, массе, площади, времени и др.) учитель опирается на опыт ребенка, уточняет и расширяет его. Так, при ознакомлении с понятием длины сначала используют прием сравнения на глаз, затем прием наложения, на следующем этапе вводятся различные мерки.
В ходе практического выполнения таких заданий учащихся подводят к самостоятельному выводу о необходимости введения единых общепринятых единиц каждой величины. Дети знакомятся с измерительными инструментами.
Ознакомление с единицами величин и их соотношениями проводится в течение всех лет обучения в начальной школе. Одной из основных задач четвертого года обучения становится пополнение и обобщение этих знаний. Необходимо рассмотреть соотношения между единицами каждой величины. Эти соотношения усваиваются учащимися при выполнении различных заданий и заучивании соответствующих таблиц. Программой предусмотрено также изучение сложения и вычитания величин, выраженных в одних и тех же единицах (длины, массы, времени и др.), умножение и деление значений величины на однозначное число.
Геометрический материал предусмотрен программой для каждого класса. Круг формируемых у детей представлений о различных геометрических фигурах и некоторых их свойствах расширяется постепенно. Это точка, линии (кривая, прямая), отрезок, ломаная, многоугольники различных видов и их элементы (углы, вершины, стороны), круг, окружность и др.
При формировании представлений о фигурах большое значение придается выполнению практических упражнений, связанных с построением, вычерчиванием фигур, с рассмотрением некоторых свойств изучаемых фигур (например, свойства противоположных сторон прямоугольника, диагоналей прямоугольника, в частности квадрата); упражнений, направленных на развитие геометрической зоркости (умения распознавать геометрические фигуры на сложном чертеже, составлять заданные геометрические фигуры из частей и др.).
Работа над геометрическим материалом по возможности увязывается и с изучением арифметических вопросов. Так, с самого начала геометрические фигуры и их элементы используются в качестве объектов счета предметов. После ознакомления с измерением длины отрезка решаются задачи на нахождение суммы и разности двух отрезков, длины ломаной, периметра многоугольника и в том числе прямоугольника (квадрата), а в дальнейшем и площади прямоугольника (квадрата). Нахождение площади прямоугольника (квадрата) связывается с изучением умножения, задача нахождения стороны прямоугольника (квадрата) по его площади - с изучением деления.
Различные геометрические фигуры (отрезок, многоугольник, круг) используются и в качестве наглядной основы при формировании представлений о долях величины, а также при решении разного рода текстовых задач. Трудно переоценить значение такой работы при развитии как конкретного, так и абстрактного мышления у детей.
К элементам алгебраической пропедевтики относится ознакомление детей с таким важным математическим понятием, как понятие переменной. Уже в теме «Числа от 1 до 10» после введения названий компонентов и результатов сложения и вычитания учащимся предлагаются упражнения, в которых, например, значения слагаемых заданы в табличной форме и требуется найти суммы и заполнить соответствующие клетки таблицы. В дальнейшем вводится буквенное обозначение переменной. Дети учатся находить значения буквенных выражений при заданных числовых значениях входящих в них букв.
Постепенно, начиная с решения подбором так называемых примеров с окошком вида 0+3=7, учащиеся знакомятся с простейшими уравнениями (х·8=56, x+9=19, х:4=7 и т. п.), У них формируется понятие о том, что значит решить уравнение. В теме «Числа от 1 до 100» программой предусмотрено решение уравнений на основе знания взаимосвязей между компонентами и результатами действий. В 4 классе усложняется и структура решаемых уравнений (х·8=246-86 и т. п.). Это способствует формированию у детей понятий: равенство, левая и правая части равенства.
Буквенные выражения используются при формировании некоторых обобщений. Так, например, в формулах вида 1· Ь = Ь, а· 1 = а, О· с = О, Ь· О = О и т. п. фиксируются общие положения, важные для понимания смысла действий.
Содержание курса математики позволяет осуществлять его связь с другими предметами, изучаемыми в начальной школе (русский язык, природоведение, трудовое обучение).
Это открывает дополнительные возможности для развития учащихся, позволяя, с одной стороны, применять в новых условиях знания, умения и навыки, приобретаемые на уроках математики, а с другой - уточнять и совершенствовать их в ходе практических работ, выполняемых на уроках по другим учебным предметам.
При обучении математике важное значение имеет индивидуальный подход к учащимся. Целесообразно подбирать для каждого ученика задания в соответствии с его интересами и возможностями, используя в этих целях материал из комплекта пособий, специально отвечающих этим задачам (для тренировочной работы - «Карточки с математическими заданиями и играми» для 1,2,3 и 4 классов авторов М. И. Моро, Н. Ф. Вапняр, С. И. Волковой, выпущенные издательством «Просвещение» соответственно в 1996, 1997, 1999 П.; для работы с детьми, интересующимися математикой,- специальные тетради «Для тех, кто любит математику» авторов М. И. Моро, С. И. Волковой; тетрадь для 2 класса издана в «Просвещении» В 1999 Г., тетради для 3 и 4 классов - в производстве), а также учебные и методические пособия других авторов.
На первых порах обучения важное значение имеет игровая деятельность детей на уроках математики. Дидактические игры и игровые упражнения учитель подбирает по своему усмотрению с учетом реальных условий работы с классом.
В программе сформулированы основные требования к знаниям, умениям и навыкам учащихся к концу каждого года обучения, а для выпускного класса начальной школы - уровень требований, необходимых для преемственной связи с курсом математики в среднем звене школы.
ПРОГРАММА 3 класс (136 ч)
Числа от 1 до 100 (продолжение)
Табличное умножение и деление. (56ч.)
Таблица умножения однозначных чисел и соответствующие случаи деления.
Умножение числа 1 и на 1. умножение 0 и на 0, деление числа 0, невозможность деления на 0.
Нахождение числа, которое в несколько раз больше или меньше данного; сравнение чисел с помощью деления.
Примеры взаимосвязей между величинами.
Решение подбором уравнений вида х3=21, х:4=9, 27:х=9.
Площадь. Единицы площади: квадратный сантиметр, квадратный дециметр, квадратный метр. Соотношение между ними.
Площадь прямоугольника, квадрата.
Обозначение геометрических фигур буквами.
Единицы времени: год, месяц, сутки. Соотношения между ними.
Круг. Окружность. Центр, радиус, диаметр окружности.
Нахождение доли числа и числа по его доле. Сравнение долей.
Внетабличное умножение и деление (28ч.)
Умножение суммы на число. Деление суммы на число.
Устные приемы внетабличного умножения и деления.
Деление с остатком.
Проверка умножения и деления. Проверка деления с остатком.
Выражения с двумя переменными вида, а+б, а-б, аб, с: б;
Нахождение их значений при заданных числовых значениях входящих в них букв.
Уравнения вида х 6=72, х:8=12, 64:х=16 и их решение на основе знания взаимосвязей между результатами и компонентами действий
Числа от 1 до 1000.
Нумерация (12ч.)
Образование и названия трехзначных чисел. Порядок следования чисел при счете.
Запись и чтение трехзначных чисел. Представление трехзначного числа в виде суммы разрядных слагаемых.
Сравнение чисел.
Увеличение и уменьшение числа в 10, 100 раз.
Арифметические действия (36 ч.)
Устные приемы сложения и вычитания, умножения и деления чисел в случаях, сводимых к действиям в пределах 100.
Письменные приемы сложения и вычитания. Письменные приемы умножения и деления на однозначное число.
Единица массы: грамм. Соотношение грамма и килограмма.
Виды треугольников: разносторонние, равнобедренные.
Решение задач в 1-3 действия на сложение, вычитание, умножение и деление в течение года.
Итоговое повторение (4ч.)
Основные требования к знаниям, умениям и навыкам обучающихся.
К концу 3 класса обучающиеся должны знать:
Названия и последовательность чисел до 1000;
Названия компонентов и результатов умножения и деления;
Таблицу умножения однозначных числе и соответствующие случаи деления;
Правила порядка выполнения действий в выражениях в 2- 3 действия.
Обучающиеся должны уметь:
Читать, записывать, сравнивать числа в пределах 1000;
Выполнять устно четыре арифметических действия в пределах 100;
Выполнять письменно сложение, вычитание двузначных и трехзначных чисел в пределах 1000;
Выполнять проверку вычислений;
Вычислять значения числовых выражений, содержащих 2-3 действия;
Решать задачи в 1-3 действия;
Находить периметр многоугольника и в том числе прямоугольника, квадрата.
Список литературы
Методические пособия для учителя
Бантова М.А. Математика. 3 класс: методическое пособие / М.А. Бантова и др. – М.: Просвещение, 2010.
Волкова С.И. Математика. Контрольные работы. 1-4 классы: пособие для учителей общеобразовательных учреждений / С.И. Волкова– М.: Просвещение, 2009.
Волкова С.И. Математика. 3 класс: проверочные работы / С.И.Волкова– М.: Просвещение, 2010.
Моро М.И. Математика. Программа и планирование учебного курса. 1-4 классы: пособие для учителей общеобразовательных учреждений / М.И. Моро и др. – М.: Просвещение, 2010.
Дополнительная литература для учителя
Быкова Т.П. Нестандартные задачи по математике: 3 класс /Т.П.Быкова. – М.: Издательство «Экзамен», 2010.
Занимательная математика. Смекай, отгадывай, считай. (Материалы для занятий с обучающимися 1-4 классов. Логические и комбинаторные задачи, развивающие упражнения) сост. Н.И.Удодова. – Волгоград: Учитель, 2010.
Логинова О.Б., Яковлева С.Г. Мои достижения. Итоговые комплексные работы. 3 класс /под. ред. О.Б. Логиновой. – М.: Просвещение, 2011.
Рудницкая В.Н. Контрольные работы по математике. 3 класс: к учебнику М.И.Моро и др. «Математика. 3 класс» / В.Н.Рудницкая. – М.: Издательство «Экзамен», 2010.
Контрольно-измерительные материалы
Контрольная работа №1
I вариант
1.Решите задачу:
Под одной яблоней было 14 яблок, под другой – 23 яблока. Ёжик утащил 12 яблок. Сколько яблок осталось?
2. Реши задачу:
Длина одного отрезка 5 см, а другого 12 см. На сколько сантиметров длина второго отрезка больше, чем длина второго?
3. Реши примеры, записывая их столбиком:
93 – 15= 80 – 24 = 48 + 19 = 16 + 84 = 62 – 37= 34 + 17 =
4. Решите уравнения:
65 – х = 58
5. Сравните (поставьте знак «<», «>», «=») :
28 + 7 41 – 7 4 см 2 мм 40 мм
7 + 7 + 7 7 + 7 3 см 6 мм 4 см
6. Задача на смекалку :
В болоте жила-была лягушка Квакушка и её мама Кваквакушка. На обед Кваквакушка съедала 16 комаров, а Квакушка на 7 меньше, на ужин 15 комаров, Квакушка на 5 меньше. Сколько комаров нужно лягушкам в день, если они не завтракают?
II вариант
1.Решите задачу:
В магазин в первый день прислали 45 курток, а второй 35 курток. Продали 29 курток. Сколько курток осталось продать?
2. Реши задачу:
Длина одного куска провода 8 м, а другого 17 м. На сколько метров меньше длина первого куска, чем второго?
3. Реши примеры, записывая их столбиком:
52 – 27 = 70 – 18 = 48 + 36 = 37 + 63 = 94 – 69= 66 + 38 =
4. Решите уравнения:
Х – 14 = 50
5. Сравните (поставьте знак «<», «>», «=») :
31 - 5 19 + 8 5 см 1 мм 50 мм
9 + 9 9 + 9 + 9 2 см 8 мм 3 см
6. Задача на смекалку :
Мышка-норушка и 2 лягушки-квакушки весят столько же, сколько 2 мышки-норушки и одна лягушка квакушка. Кто тяжелей: мышка или лягушка?
Контрольная работа №2 (за 1 четверть)I вариант
1.Решите задачу:
В куске было 54 м ткани. Из этой ткани сшили 9 курток, расходуя по 3 метра на каждую. Сколько метров ткани осталось в куске?
2.Решите примеры:
24 : 4 х 7 = 15 : 3 – 9 = 14 : 2 х 4 =
3. Решите уравнения:
90 – х = 54 х + 62 = 89
4. Начертите квадрат со сторонами 4 см. Найдите его периметр.
5*.Дополнительное задание.
63 : 7 х 4 = 49 : 7 х 5 = 54 : 9 х 8 = ( 40 – 39 ) х ( 6 х 9 ) =
II вариант
1.Решите задачу:
Для изготовления папок ребята приготовили 50 листов бумаги. Они сделали 8 папок, расходуя на каждую по 4 листа бумаги. Сколько листов бумаги у ребят осталось?
2.Решите примеры:
28 : 4 х 6 = 45 : 5 – 6 = 32 : 8 х 4 =
3. Обозначьте порядок действий и выполните действия:
80 - х = 26 х + 54 = 79
4.Начертите прямоугольник со сторонами 5 см и 2 см. Найдите его периметр.
5*.Дополнительное задание.
21 : 3 х 8 = 54 : 6 х 7 = 28 : 4 х 9 = ( 40 – 39 ) х ( 6 х 9 ) =
Контрольная работа № 3
I вариант
1.Решите задачу:
Девочка прочитала в первый день 16 страниц, а во второй – 14. После этого ей осталось прочитать 18 страниц. Сколько всего страниц в этой книге?
2.Решите задачу:
Карандаш стоит 3 рубля. Сколько стоят 9 таких карандашей?
3. Решите примеры:
( 17 – 8 ) х 2 = 82 – 66 =
( 21 – 6 ) : 3 = 49 + 26 =
18 : 6 х 3 = 28 + 11 =
8 х 3 – 5 = 94 – 50 =
4.Сравните:
38 + 12 12 + 39 7 + 7 + 7 + 7 7 + 7 + 7
5.Найдите периметр прямоугольника со сторонами 4 см и 2 см
II вариант
1.Решите задачу:
В первый день школьники окопали 18 деревьев, а во второй – 12 деревьев. После этого им осталось окопать 14 деревьев. Сколько всего деревьев нужно было окопать?
2.Решите задачу:
В пакете 7 кг картофеля. Сколько килограмм картофеля в 3 таких пакетах?
3. Решите примеры:
( 23 – 6 ) : 2 = 87 – 38 =
( 15 – 8 ) х 3 = 26 + 18 =
12 : 6 х 9 = 73 + 17 =
3 х 7 – 12 = 93 – 40 =
4.Сравните:
46 + 14 46 + 15 5 + 5 + 5 5 + 5
5.Найдите периметр прямоугольника со сторонами 3 см и 5 см
Контрольная работа № 4 (за 2 четверть)
I вариант
1.Реши задачу:
В театре ученики первого класса заняли 2 ряда по 9 мест, а ученики второго класса 13 мест. Сколько всего мест заняли ученики первого и второго классов вместе?
2.Реши примеры:
72 – 64 : 8 36 + ( 50 – 13 )
( 37 + 5 ) : 7 25 : 5 х 9
63 : 9 х 8 72 : 9 х 4
3.Найдите площадь огорода прямоугольной формы, если длина 8 метров, а ширина 5 метров.
4. Вставьте вместо точек арифметические знаки, так чтобы равенства были верными:
6 3 9 = 18 8 4 9 = 18
5* Папа разделил 12 хлопушек между сыном и его тремя друзьями поровну. Сколько хлопушек получил каждый мальчик?
II вариант
1.Реши задачу:
Актовый зал освещает 6 люстр по 8 лампочек в каждой, да ещё 7 лампочек перед сценой. Сколько всего лампочек освещает актовый зал?
2.Реши примеры:
75 – 32 : 8 81 : 9 х 5
8 х ( 92 – 86 ) 42 : 7 х 3
( 56 + 7 ) : 9 64 : 8 х 7
3.Найдите площадь сада квадратной формы, если его сторона равна 4 метра.
4. Вставьте вместо точек арифметические знаки, так чтобы равенства были верными:
9 3 6 = 18 4 2 8 = 16
5* Катя разложила 18 пельменей брату Толе и двум его друзьям поровну. Сколько пельменей было на каждой тарелке?
Контрольная работа № 5
I вариант
1.Реши задачу:
Оля собирает календарики. Все календарики она разложила в два альбома: в большой на 9 страниц по 6 календариков на каждую страницу и в маленький на 4 страницы, по 3 календаря на каждую. Сколько календариков у Оли?
2.Найди значения выражений:
5 х 7 6 х ( 9 : 3 ) 21 : 1
36 : 6 56 : 7 х 8 0 : 1
27 : 3 9 х ( 64 : 8 ) 18 : 18
3.Начертите квадрат со стороной 6 см.
а) Найдите периметр и площадь;
б) разделите квадрат на четыре равные части, и закрасьте одну четвёртую часть.
4.Выполните преобразования:
1 м2 = дм2 8 дм 2 см = см 35 мм = см мм
5* . Торт разрезали на 12 частей. Сколько частей торта съели, если их осталось в 6 раз меньше, чем было?
II вариант
1.Реши задачу:
На дачном участке мама посадила 5 грядок помидор одного сорта по 9 кустов на каждой грядке и 3 грядки другого сорта по 8 кустов на каждой грядке. Сколько всего кустов помидоров посадила мама на этих грядках?
2.Найди значения выражений:
0 х 4 3 х ( 14 : 2 ) 10 : 1
21 : 3 42 : 6 х 5 0 х 5
56 : 7 8 х ( 48 : 8 ) 0 : 20
3.Начертите прямоугольник со сторонами 6 см и 3см
а) Найдите периметр и площадь;
б) разделите прямоугольник на четыре равные части, и закрасьте одну четвёртую часть.
4.Выполните преобразования:
1 дм2 = см2 5 см 7 мм = мм 43 дм = м дм
5* . В холодильнике 48 пельменей. Сколько пельменей сварили. Если их осталось в 6 раз меньше, чем было?
Контрольная работа № 6
I вариант
1.Решите задачу:
У дежурных в столовой 48 глубоких тарелок и столько же мелких. Все тарелки дежурные должны расставить на 12 столов, поровну на каждый стол. Сколько тарелок они должны поставить на каждый стол?
2.Выполните деление с остатком и проверьте:
50 : 15 = 100 : 30 = 9 : 13 =
3. Заполните пропуски:
42 = 2 х 3 х 12 = 2 х 3 х 70 = 2 х х 5
4. Запишите не менее трёх двузначных чисел, которые при делении на 7 дают остаток 5.
5. Найдите периметр прямоугольника, у которого длина 28 см, а ширина на 4 см меньше.
II вариант
1.Решите задачу:
У Саши 49 рублей, а у Пети столько же. На все деньги они могут купить 14 одинаковых тетрадей. Сколько стоит одна тетрадь?
2.Выполните деление с остатком и проверьте:
40 : 9 = 80 : 12 = 8 : 9 =
3. Заполните пропуски:
48 = 2 х 3 х 18 = 2 х 3 х 60 = 2 х х 5
4. Запишите не менее трёх двузначных чисел, которые при делении на 8 дают остаток 6.
5. Найдите периметр прямоугольника, у которого длина 26 см, а ширина на 5 см меньше.
Контрольная работа № 7 (за 3 четверть)
2вариант 1.Решите задачу. В пакет положили 6 репок, а в сумку в 4 раза меньше, чем в пакет. Сколько всего репок положили в сумку и в пакет?
2.Укажите порядок действий и найдите значения выражений:
I вариант
1.Решите задачу.
В букете 20 красных роз, а белых в 4 раза меньше, чем красных. Сколько всего роз в букете?
2.Укажите порядок действий и найдите значения выражений:
85 + 35 : 5 = ( 92 – 87 ) х 9 = 96 – 72 : 12 + 15 =
3.Вставьте вместо точек числа так, чтобы равенства стали верными:
м 14 см = 714 см 400 см = дм
4.Найдите частное и остаток:
17 : 6 48 : 9 57 : 6
5.Длина прямоугольника равна 20 см, а ширина в 4 раза меньше, Найдите площадь этого прямоугольника.
6.Решите задачу:
Муха Цокотуха купила самовар и пригласила гостей. Она испекла к чаю 60 очень вкусных крендельков. Каждому гостю досталось по целому крендельку и по половинке, да ещё 3 кренделька осталось. Сколько было гостей?
7*. Дополнительное задание:
45 : 15 6 х 100
18 х 4 570 – 70
90 : 10 605 – 600
84 : 7 864 – 4
78 + 42 : 7 = ( 65 – 58 ) х 8 = 78 – 19 х 2 + 34 =
3.Вставьте вместо точек числа так, чтобы равенства стали верными:
м 16 см = 916 см 700 см = дм
4.Найдите частное и остаток:
47 : 5 63 : 8 71 : 9
5.Длина прямоугольника равна 40 см, а ширина в 20 раз меньше, Найдите площадь этого прямоугольника.
6.Решите задачу:
Испугались Три Толстяка, что похудели, бросились к весам. Встали втроём на весы – всё в порядке, 750 кг. Встал на весы Первый Толстяк и Второй Толстяк – 450 кг. Второй и Третий Толстяки – 550 кг. Вздохнули с облегчением: «Не похудели». Найдите вес каждого Толстяка.
7*. Дополнительное задание:
72 : 2 5 х 100
19 х 5 320 – 20
30 : 10 701 – 700
36 : 12 455 – 55
Контрольная работа № 8 (за 4 четверть)
Вариант №1
Решите задачу: Утром в кассе было 813 рублей. Днем из нее выдали 508 руб., а приняли 280 руб. Сколько денег стало в кассе к концу дня?
Запишите число, состоящее:
А) из 6 сот 2 дес 4 ед.;
Б) из 8 сот и 3 дес.;
В) из 5 ед. первого разряда, 2 ед. второго разряда и 4 ед. третьего разряда.
Реши примеры:
3 5 4
+
2 2 8
______
5 0 5
+
3 3 7
_____
8 6 7
-
3 4 9
_____
6 5 0
-
3 7 0
_____
Начерти прямоугольник, длина которого 7 см, а ширина на 3 см меньше. Найди его периметр и площадь.
Выполни действия: (87 : 29 + 1) * 18
Вставь пропущенные числа: 13 QUOTE 1415
7*.Сориентируйся во времени: Маленькая Маша родилась в среду 19 апреля 2000 года. Определите, в какой день недели ей исполнится 10 лет.
Вариант №2
Решите задачу: В трех домах 385 жильцов. В первом доме 134 жильца, во втором 117. Сколько жильцов в третьем доме?
Запишите число, состоящее:
А) из 3 сот 1 дес 8 ед.;
Б) из 6 сот и 2 дес.;
В) из 5 ед. третьего разряда, 1 ед. второго разряда и 7 ед. первого разряда.
Реши примеры:
7 4 4
+
1 8 0
______
6 2 3
+
7 9
_____
9 2 5
-
3 0 7
_____
1 3 6
-
9 8
_____
Начерти прямоугольник, длина которого 9 см, а ширина на 3 см меньше. Найди его периметр и площадь.
Выполни действия: (57 : 19 + 1) * 16
Вставь пропущенные числа: 13 QUOTE 1415
7*.Сориентируйся во времени: В субботу, 13 января 2001 года Марии исполнилось ровно двадцать лет. В какой день
13PAGE \* MERGEFORMAT141415
15