РЕШЕНИЯ ЗАДАНИЯ ДЛЯ ВЫПУСКНОГО ЭКЗАМЕНА ПО АЛГЕБРЕ И НАЧАЛАМ АНАЛИЗА 11-класс 4-задание 
4-nji iş. Çep tarap
1.Aňlatmany ýönekeýleşdiriň:
ab∙4aa+24a-1b2-a2+4a2-4 = a12b-12a-14(a+2)a- 14b12 -a2+4a2-4 = aa+2 - a2+4a2-4 = 
= a2-2a-a2-4a2-4 = -2(a+2)a2-4 = - 2a2-4 ;                   Jogaby:  - 2a2-4 ;    
2.Deňlemeler sistemasyny çözüň:
xy-y2=-2,          2x2-xy-y2=-4.             X=  1y (y2-2);    1y2(y2-2)2-2(y2-2) - y2=-4;
-8 + 8y2+2=- 4;   =8y2 =2;   y2=4;      y1= 2 ;  y2= -2 ;    
x1= 1y1(y12-2 )=  12 (4-2)=1 ;   x2 = - 1 ;  
Jogaby: (1,2);  ( -1, -2);
3.Deňsizligi çözüň:
log2x2-7x+6≤1+log27;     log2x2-7x+6≤log214;   
x2-7x+6>0;x2-7x+6≤14;      (x-6)(x-1)>0;(x+8)(x+1)≤0;    
x€(-∞;1)∪(6;+∞);x€-∞;1;                               x€[-1;1∪6;8];      Jogaby:  x€[-1;1∪6;8];4. Gönüburçly üçburçlugyň katetleriniň jemi 23 sm, meýdany 60 sm2 deň. Gönüburçly üçburçlugyň katetlerini tapyň. 
a+b=23sm,    12ab= 60sm2;   ab -?
a+b=23ab= 120             a(23-a)=120;      a2-23a+120=0;
a1= 23+529-4802 = 23+72 = 15;  a2= 23-529-4802 = 23-72= 8;
a1=15;   a2= 8;                Jogaby8 sm we  15sm;
5. Sanlaryň köpeltmek hasylyny tapyň:
z1 = 1 + i  we (и)  z2 = 8 cos3π8+isin3π8.
Z1 · Z2 = (1 + i  ) 8cosπ3+isinπ3 = (1 + i  ) 8cos3π412+isin3π412=
= (1 + i  ) 81-222+i 1+222 = (1 + i  ) 82-22  +i 2-22 =
= 2(1 + i  ) (2-2 + i2+2 ) = ( 1 + i  )( 2+i6 ) =
= 2-6 + i( 2+i6); 
Jogaby:  2-6 + i( 2+i6); 
6. Integraly hasaplaň:
π23π2sin2x2dx=π23π212 1-cosxdx= 12(x-sinx)||2π/23π/2 =
= 12( 3π2+1- π2+1 ) = π2+1  ;   Jogaby:  π2+1  7. Goşulyjylaryň biri beýlekisinden 6 esse kiçi, olaryň üçüsiniň köpeltmek hasyly bolsa iň uly bolar ýaly edip, 21-i üç položitel goşulyjynyň jemi görnüşinde ýazyň. 
x+y+z = 21;   x = 6y,     p = xyz;   p(x)=xyz = x· x6 · ( 21 -  7x6) ;
x€[0; 18];  pˊ(x)= x3 ( 27 - 7x6 ) -  76 ·x26 = 7x - 21x236 = 7x( 1 - x12 );
pˊ(x)=0;  x1=0;  x2= 12;    
P(0)=p(18)=0;   max[0;18]p12=12·2·7 =168;
Jogaby: 12+2+7 = 21..
4-nji iş. Sag tarap
Aňlatmany ýönekeýleşdiriň:
3a2b∙6bb+36a4b-3-b2+9b2-9.   3a2b∙6bb+36a4b-3-b2+9b2-9 = a23b-13b-16(b+3)a23b-12- b2+9(b-3)(b+3) =
  = bb+3- b2+9(b-3)(b+3) = b2-3b-b2-9(b-3)(b+3) = -3(b+3)(b-3)(b+3) = 
 = - -3b-3) ;                                          Jogaby:  - -3b-3) ;
Deňlemeler sistemasyny çözüň:
xy+y2=4,x2-2xy-y2=2.   x= 1y(4-y2);    1y2(4-y2)2-2(4-y2)- y2=2;
=16y2 -16+2y2=2;   =8y2 -9+y2=0;   y ≠ 0;    ( y - 8y )( y- 1y ) = 0;
y = 8y = 0;    y1= 8 ;  y2= -8 ;    y = 1y = 0;     y3= 1;   y4= - 1;
x1= 1y1(4-y12 )= - 48 = - 2 ;   x2 = 2 ;  x3 = 3;  x4 = - 3;
Jogaby: (- 2,8 );   (2, -8 );  (3,1);  ( -3, -1);
 3.Deňsizligi çözüň:
log0,5-x2+9x-14≥log0,53-1.log0,5-x2+9x-14≥log0,56 ;      -x2+9x-14 > 0;
-x2+9x-14>0;-x2+9x-14 ≤6;      x2-9x+14>0;x2-9x+20 ≤0;   (x-2)(x-7<0;x-4x-5≥0;x€ 2;7;                         x€( -∞;4)∪( 5; +∞);          x€( 2;4)∪( 5;7);
Jogaby: x€( 2;4)∪( 5;7);
4. Gönüburçly üçburçlugyň katetleriniň biri gipotenuzasyndan 3 sm, beýlekisi 6 sm kiçi. Üçburçlugyň gipotenuzasyny tapyň. 
a2+b2= c2  ;  a= c-3;   b = c-6;   (c-3)2+(c-6)2 =  
= 2c2 – 18c + 45 = c;   c2 – 18c + 45 = 0;  c1= 15;    c2= 3;    c2 – däl kök.
Jogaby: 15sm.
5. Sanlaryň köpeltmek hasylyny tapyň:
     
                        z1 = -1 + i  we (и)  z2 = cosπ3+isinπ3.
Z1 · Z2 = (-1 + i  ) cosπ3+isinπ3 = 2cos13π12+isin13π12=
= -  121+3 +i 121-3; 
Jogaby:  -  121+3 +i 121-3;
6. Integraly hasaplaň:
0π/2сos2x2dx  =0π2 12 1-cosxdx= 12(x+sinx)|π 22 = 12(π 2 + 1) = π 4 + 12 ;
Jogaby:   π 4 + 12 ;
7. 54 san üç položitel goşulyjynyň jemi görnüşinde ýazylypdyr. Birinji goşulyjy ikinjiden iki esse uly. Goşulyjylaryň haýsy bahalarynda olaryň köpeltmek hasyly iň uly baha eýe bolar?
x+y+z = 54;   x = 2y,     p = xyz;   p(x)=xyz = x· x2 · ( 54 - x - x2) =
= x22 ( 54 - 3x2 );  x€[0; 36];  pˊ(x)=x( 54 - 3x2 ) -  34 x2= -  94 x2+54x =
= 9x( -- x4 + 6);  pˊ(x)=0;  x1=0;  x2= 24;    x1€[0; 36]; x2 €[0; 36];  
P(0)=p(36)=0;   max[0;36]p24=24·12·18 =5184;
Jogaby: 24; 12; 18.