Мини-проект по математике по теме: «Математика в банковском деле», авторы:Петрушина Евгения, ученица 6Б класса Петрушина Татьяна, ученица 5Б класса, МБОУ Школа №56 г.Рязани
МБОУ «Школа №56»
Мини-проект по математике по теме:
«Математика в банковском деле»
Авторы: Петрушина Евгения,
ученица 6Б класса
Петрушина Татьяна,
ученица 5Б класса
Руководитель: учитель математики
первой квалификационной категории
Левакова Светлана Викторовна
Рязань 2016Актуальность работы обусловлена нашим большим интересом к теме данного исследования в математике.
Тип проекта: творческий, практико–ориентированный мини – проект.
Методы исследования:
1) исследовательская работа.
2) изучение познавательной, художественной литературы.
Цель работы:
получение дополнительных знаний самостоятельным путём,
воспитание целеустремленности и организованности,
умение применить полученные математические знания в жизни.
Задачи: показать умение отбирать и систематизировать математический материал, отработать умение применять полученные знания в жизни.
Математика является экспериментальной наукой - частью теоретической физики и членом семейства естественных наук. Основные принципы построения и преподавания всех этих наук применимы и к математике. Искусство строгого логического рассуждения и возможность получать этим способом надежные выводы не должно оставаться привилегией Шерлока Холмса - каждый школьник должен овладеть этим умением. Умение составлять адекватные математические модели реальных ситуаций должно составлять неотъемлемую часть математического образования.
Сегодня Россия интегрируется в мировую экономическую систему, и в начале третьего тысячелетия жизнь требует изучения основных законов экономики уже в школе и как можно раньше. Развитие информационного общества, научно-технические преобразования, рыночные отношения требуют от каждого человека высокого уровня профессиональных и деловых качеств, предприимчивости, способности ориентироваться в сложных ситуациях, быстро и безошибочно принимать решения. Экономическая образованность и экономическое мышление формируются не только при изучении курса экономики, но и на основе всего комплекса предметов, изучаемых в школе, математике здесь принадлежит особая роль.
Довольно сложно определить, как и когда возникли первые банки. Самыми древними считаются операции по сохранению денег. Известно, что еще в древнейших государствах практиковались операции по приему вкладов. Занимались этим либо частные лица, либо церковные учреждения. Так многие храмы Древней Греции и Рима осуществляли хранение денег. В качестве всеобщего эквивалента в ходе исторического развития стали серебро и золото.
Отдельно возникла потребность в обмене денег. В средневековой Европе не существовало единообразной системы монет, торговля велась монетами разных государств, городов и даже частных лиц. Все монеты имели разный вес, форму и номинал. Поэтому нужны были специалисты, разбирающиеся в монетах и способные вести обмен. Эти специалисты располагались со своими обменными столами в местах оживленной торговли. Поэтому слово «банк» происходит от итальянского banco, означающее стол, за которым сидел меняла. Аналогичные операции осуществлялись и гораздо раньше в Древней Греции, Риме, на Востоке. Люди, занимающиеся сохранными операциями и обменом денег, понимали, что собранные богатства используются непроизводительно, лежат без движения. Если же хотя бы часть имеющихся средств отдавать во временное пользование, то можно получать существенную выгоду. Так возникли ссудные (кредитные) операции, в основе которых лежача передача денег на срок с обязательным возвратом с уплатой процента. Залогом при этом выступали дома, корабли, драгоценные вещи, скот, рабы.
В начале XV в. возник первый банк современного типа — Банк св. Георгия в Генуе. В Италии возникла и двойная запись бухгалтерского учета. В XVI-XVII вв. купеческие гильдии североитальянских и ряда немецких городов создают специальные жиробанки (от итал. giro — круг, оборот), которые осуществляли безналичные расчеты между постоянными клиентами металлическими монетами и заменявшими их бумагами. Металлическое денежное обращение имело значительные недостатки: необходимы были регулярные поступления драгоценных металлов для возмещения запаса монет, золотые деньги крайне неэластичны по своему предложению ввиду ограниченности в природе и больших затрат на добычу; добыча золота также не увеличивала ни производительное, ни личное потребление. В XVII в. вексель приобретает свойство обращаемости и появляются первые банкноты.
В России первые банковские операции осуществляла в 1729 – 1733 гг. монетная контора, а первый коммерческий банк – Банк для поправления при Санкт-Петербургском порте коммерции и купечества – был создан в 1754 г. Термин "коммерческий банк" возник на ранних этапах развития банковского дела, когда банки обслуживали преимущественно торговлю, товарообменные операции и платежи. Банки кредитовали транспортировку, хранение и другие операции, связанные с товарным обменом. Современный же коммерческий банк – это организация, созданная для привлечения денежных средств и размещения их от своего имени на условиях возвратности, платности и срочности. Согласно действующему российскому законодательству установлено, что предприятия, организации, учреждения, независимо от их организационно-правовой формы (и, следовательно, форм собственности):
· обязаны хранить свои денежные средства в учреждениях банков;
· должны производить расчеты по своим обязательствам с другими предприятиями в безналичном порядке через учреждения банков;
· могут иметь в своей кассе наличные деньги в пределах лимитов, установленных учреждениями банков по согласованию с руководством предприятий.
Таким образом, в современной российской рыночной экономике банки опосредуют движение денег, и никакой другой институт такими полномочиями не обладает.
Однако наряду с банками перемещение денежных средств на рынках осуществляют и другие финансовые учреждения: инвестиционные фонды, страховые фонды, биржи и др. Но банки как субъекты экономической системы имеют два существенных признака, отличающих их от других субъектов.
Профессию банкира могут выбрать люди, которые имеют аналитический склад ума и хорошие математические способности. Это должен быть человек, умеющий все раскладывать по полочкам, анализировать и систематизировать информацию. В профессии крайне важна сосредоточенность и повышенная внимательность к деталям. Хорошими банкирами станут люди, которым нравятся экономические дисциплины. Человек должен иметь хорошую память, обладать стремлением доводить все до логического завершения.
Практическое применение решения задач на проценты:
Тип 1: Задачи на простые проценты.
Задача. Родители взяли в банке кредит 5000 рублей сроком на год под 15% ежемесячно. Сколько денег они заплатят банку через год?
Решение. Простые проценты называются так, потому что они начисляются многократно, но всякий раз к исходной сумме. Если обозначить исходную сумму как а, сумму, которая наращивается, как S, процентную ставку как х% и количество периодов начисления процента как у, то формулу можно записать так: S = а * (1 + у * х/100). Теперь подставим сюда цифры из условия задачи и узнаем, сколько денег родители заплатят банку: S = 5000 * (1 + 12 * 15/100) = 14000.
Тип 2: Задачи на сложные проценты.
Задача. На этот раз сумма кредита 25000 рублей, взятых под те же 15% сроком на 3 месяца. Снова надо узнать, сколько денег придется заплатить банку по истечении срока кредита.
Решение. Сложные проценты отличаются от простых тем, что процент много раз начисляется не к исходной сумме, а к сумме с уже начисленными раньше процентами. Пускай снова S – наращиваемая сумма, а – исходная, х% - процентная ставка, у – количество периодов начисления процента. В этом случае формула принимает вид: S = а * (1 + х/100)у. Подставляем цифры из условия: S = 25000 * (1 + 15/100)3 = 38021,875 – искомая сумма.
Кстати, простые задачи на проценты можно очень легко решать с помощью пропорции. Этот метод наглядный и дает такой же результат, так что выбирать можно каждому тот способ решения, который кажется проще. Давайте решим задачу №3 про класс и процент девочек в нем, составив пропорцию.
Решение. Обозначим искомый процент девочек в классе как х, общее количество учеников примем за 100%. Пропорция выглядит так:
30 – 100%14 – х%
Перемножим крест накрест левую и правую части пропорции и получим, что 30* х = 14 * 100 («30 относится к х также, как 14 относится к 100»). Откуда найти х уже совсем несложно: х = 14 * 100/30 = 47%.
Задача 3: После открытия торгов на бирже в понедельник акции некой компании выросли в цене на неизвестное количество процентов. А во вторник на то же самое количество процентов упали в цене. В итоге они подешевели на 4% по отношению к своей первоначальной стоимости в понедельник. На какой процент акции этой компании поднимались в цене в понедельник?
Решение. Пускай первоначальная стоимость акций это 1. В понедельник акции дорожают на х * 100%. Их стоимость в это время: 1 + х * 1. Во вторник акции дешевеют на х * 100%. Их стоимость после этого: 1 + х – х * (1 + х). После чего они стали дешевле на 4%, т.е. стали стоить 0,96.
Отсюда 1 + х – х * (1 + х) = 0,96 ↔1 – х2 = 0,96 ↔ х2 = 0,04 ↔ х = 0,2. Т.е. в понедельник акции компании дорожали на 20%.